精英家教网 > 初中数学 > 题目详情

【题目】如图1,在锐角△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于F,且BF=AC。求证:ED平分∠FEC。

【答案】证明:∵AD⊥BC,BE⊥AC,∴∠BDF=∠ADC=90°,∠AEB=∠FEC=90°,
∵∠DBF+∠C=90°,∠DAC+∠C=90°,
∴∠DBF=∠DAC,
在△BDF和△ADC中,

∴△BDF≌△ADC(AAS),
∴BD=AD,
∴∠BAD=∠ABD=45°,
∵∠AEB=∠ADB=90°,
∴A、B、D、E四点共圆,
∴∠BED=∠BAD=45°,
∴∠CED=90°-45°=45°=∠BED,
∴ED平分∠FEC.
【解析】由角的和差得到∠DBF=∠DAC,根据全等三角形的判定方法AAS,得到△BDF≌△ADC,得到对应边相等,由四点共圆和圆周角定理,得到ED平分∠FEC.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在频数分布直方图中,有11个小长方形,若中间一个小长方形的面积等于其它10个小长方形面积的和的 ,且数据有160个,则中间一组的频数为(
A.32
B.0.2
C.40
D.0.25

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用一条长30cm的绳子围成一个面积为60cm2的长方形,设长方形的长为xcm,则可列方程为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:x+2yz92xy+8z18,求x+y+z的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,∠E=∠F,∠B=∠C,AE=AF,以下结论:①∠FAN=∠EAM;②EM=FN;③△ACN≌△ABM;④CD=DN.其中正确的有(  )

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,已知点A(0,0),B(2,﹣2),C(4,0),D(2,2),则以这四个点为顶点的四边形ABCD是(  )

A. 正方形 B. 菱形 C. 梯形 D. 矩形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】绝对值最小的数是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB=50°,∠C=60°,求∠DAE和∠BOA的度数。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,对称轴为直线x=的抛物线经过B(2,0)、C(0,4)两点,抛物线与x轴的另一交点为A

(1)求抛物线的解析式;

(2)若点P为第一象限内抛物线上的一点,设四边形COBP的面积为S,求S的最大值;

(3)如图2,若M是线段BC上一动点,在x轴是否存在这样的点Q,使△MQC为等腰三角形且△MQB为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案