精英家教网 > 初中数学 > 题目详情

【题目】如图,∠AOB=30°,OP平分∠AOB,PD⊥OBD,PC∥OBOAC,若PC=10,则PD=________

【答案】5

【解析】

试题根据角平分线的定义和平行线的性质得到∠COP=∠CPO=∠BOP,即可得出PC=OC,根据角平分线的性质得出PD=PE,求出PE,即可求出PD

解:∵OP平分∠AOB

∴∠AOP=∠BOP

∵PC∥OB

∴∠CPO=∠BOP∴∠CPO=∠AOP

∴PC=OC

∵PC=10

∴OC=PC=10

PPE⊥OA于点E

∵PD⊥OBOP平分∠AOB

∴PD=PE

∵PC∥OB∠AOB=30°

∴∠ECP=∠AOB=30°

Rt△ECP中,PE=PC=5

∴PD=PE=5

故答案为:5

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某中学为筹备校庆活动,准备印制一批校庆纪念册,该纪念册每册需要108K大小的纸,其中4张为彩色页,6张为黑白页.印制该纪念册的总费用由制版费和印刷费两部分组成,制版费与印数无关,价格为:彩色页300/张,黑白页50/张;印刷费与印数的关系见表.

印数a (单位:千册)

1≤a<5

5≤a<10

彩色 (单位:元/张)

2.2

2.0

黑白(单位:元/张)

0.7

0.6

(1)直接写出印制这批纪念册的制版费为多少元;

(2)若印制6千册,那么共需多少费用?

(3)如印制x(1≤x<10)千册,所需费用为y元,请写出yx之间的关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知函数y=2x-4

(1)画出函数的图象

(2)判断点A(1,-2),B(2,1)是否在该函数的图象上.

(3)已知点A(-2,b)在该函数图像上,求b值;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知长方形ABCD在平面直角坐标系中的位置如图所示,将长方形ABCD沿x轴向左平移到使点C与坐标原点重合后,再沿y轴向下平移到使点D与坐标原点重合,此时点A的坐标是______,点B的坐标是______,点C的坐标是______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点O(0,0),B(1,2).

(1)若点Ay轴的正半轴上,且三角形OAB的面积为2,求点A的坐标;

(2)若点A(3,0),BCOA,BC=OA,求点C的坐标;

(3)若点A(3,0),点D(3,-4),求四边形ODAB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,从①∠1=∠2;②∠C=∠D;③∠A=∠F三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,正确命题的个数为( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=﹣x+3的图象与反比例y= (k为常数,且k≠0)的图象交于A(1,a),B两点.

(1)求反比例函数的表达式及点B的坐标;
(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】a是一个长为2m,宽为2n的长方形,沿图a中虚线用剪刀把它均分成四块小长方形,然后按图b的形状拼成一个正方形.
(1)请用两种不同的方法求图b中阴影部分的面积:
方法1: ____ (只列式,不化简)
方法2: ______ (只列式,不化简)
(2)观察图b,写出代数式(m+n2,(m-n2mn之间的等量关系: ______ ;
(3)根据(2)题中的等量关系,解决如下问题:若a+b=7,ab=5,

则(a-b2= ______ .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1),是两个全等的直角三角形(直角边分别为a,b,斜边为c).

(1)用这样的两个三角形构造成如图(2)的图形(B,E,C三点在一条直线上),利用这个图形,求证:a2+b2=c2

(2)当a=1,b=2时,将其中一个直角三角形放入平面直角坐标系中(如图(3)),使直角顶点与原点重合,两直角边a,b分别与x轴、y轴重合.

请在坐标轴上找一点C,使△ABC为等腰三角形.

写出一个满足条件的在x轴上的点的坐标:   

写出一个满足条件的在y轴上的点的坐标:   ,这样的点有   个.

查看答案和解析>>

同步练习册答案