【题目】如图1,一条抛物线与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,且当x=﹣1和x=3时,y的值相等,直线与抛物线有两个交点,其中一个交点的横坐标是6,另一个交点是这条抛物线的顶点M.
(1)求这条抛物线的表达式.
(2)动点P从原点O出发,在线段OB上以每秒1个单位长度的速度向点B运动,同时点Q从点B出发,在线段BC上以每秒2个单位长度的速度向点C运动,当一个点到达终点时,另一个点立即停止运动,设运动时间为t秒.
①若使△BPQ为直角三角形,请求出所有符合条件的t值;
②求t为何值时,四边形ACQP的面积有最小值,最小值是多少?
(3)如图2,当动点P运动到OB的中点时,过点P作PD⊥x轴,交抛物线于点D,连接OD,OM,MD得△ODM,将△OPD沿x轴向左平移m个单位长度(0<m<2),将平移后的三角形与△ODM重叠部分的面积记为S,求S与m的函数关系式.
【答案】
(1)
解:∵当x=﹣1和x=3时,y的值相等,
∴抛物线的对称轴为直线x=1,把x=1和x=6分别代入中,得顶点M(1,﹣),另一个交点坐标为(6,6),
则可设抛物线的表达式为y=a(x﹣1)2﹣,将(6,6)代入其中,解得a=,
∴抛物线的表达式为y=,即 y=
(2)
解:如下图:
当y=0时,=0. 解得:x1=﹣2,x2=4.
由题意可知:A( 2,0),B(4,0),
所以OA=2,OB=4;
当x=0时,y=﹣3,
所以点C(0,﹣3),OC=3,
由勾股定理知BC=5,
OP=1×t=t,BQ=2×t=2t,
①∵∠PBQ是锐角,
∴有∠PQB=90°或∠BPQ=90°两种情况:当∠PQB=90°时,可得△PQB∽△COB,
∴,
∴,
∴t=;
当∠BPQ=90°时,可得△BPQ∽△BOC,
∴,
∴,
∴t=;
由题意知0≤t≤2.5,
∴当t=或t=时,以B,P,Q为顶点的三角形是直角三角形…7分
②过点Q作QG⊥AB于G,
∴△BGQ∽△BOC,
∴,
∴,
∴GQ=,
∴S四边形ACQP=S△ABC﹣S△BPQ=﹣=
=9.
∵>0,
∴四边形ACQP的面积有最小值,
又∵t=2 满足0≤t≤2.5,
∴当t=2时,四边形ACQP的面积最小,最小值是;
(3)
解:如下图,
由OB=4得OP=2,把 x=2代入y=中,得y=﹣3,
所以D(2,﹣3),
直线CD∥x轴,
设直线OD的解析式为y=k1x,
则k1=﹣,所以y=﹣x,
因为△P1O1D1是由△POD 沿x轴 向左平移m个单位得到的,所以P1(2﹣m,0),D1(2﹣m,﹣3),E(2﹣m,﹣3+ )
设直线OM的解析式为y=k2x,
则k2=﹣,
所以y=﹣.
①当0时,作FH⊥轴于点H,由题意O1(﹣m,0),
又∵O1D1∥OD,
∴直线O1D1的解析式为y=﹣.
联立方程组,
解得,
所以F(,),
所以FH=,
=﹣﹣==3m﹣.
如下图,
当时,设D1P1交OM于点F,直线OM的解析式为y=﹣,
所以F(2﹣m,﹣),
所以EF=,
∴S△OEF=
综上所述,S=.
【解析】(1)因为当x=﹣1和x=3时,y的值相等,所以抛物线的对称轴为直线x=1,将x=1和x=6分别代入中,可求得抛物线的顶点坐标和与直线另一交点的坐标,然后设出抛物线的顶点式,最后将(6,6)代入即可求得抛物线的解析式;
(2)①先求得A( 2,0),B(4,0),C(0,﹣3),从而可得到OA=2,OB=4;OC=3,由勾股定理知BC=5,有∠PQB=90°或∠BPQ=90°两种情况:当∠PQB=90°时,可得△PQB∽△COB,当∠BPQ=90°时,可得△BPQ∽△BOC;②过点Q作QG⊥AB于G,能够等到△BGQ∽△BOC,可求得GQ=然后S四边形ACQP=S△ABC﹣S△BPQ=9-,从而可求得四边形的面积的最值;
(3)先求得点D的坐标,然后根据平移与坐标变换的关系得出点P1(2﹣m,0),D1(2﹣m,﹣3),E(2﹣m,﹣3+ ),①当0时,作FH⊥轴于点H,S四边形ACQP=S△ABC﹣S△BPQ;当时,设D1P1交OM于点F,S△OEF=.
科目:初中数学 来源: 题型:
【题目】二次函数y=x2+bx的图象如图,对称轴为直线x=1,若关于x的一元二次方程x2+bx﹣t=0(t为实数)在﹣1<x<4的范围内有解,则t的取值范围是( )
A.t≥﹣1
B.﹣1≤t<3
C.﹣1≤t<8
D.3<t<8
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为鼓励大学生创业,政府制定了小型企业的优惠政策,许多小型企业应运而生.某市统计了该市2015年1﹣5月新注册小型企业的数量,并将结果绘制成如图两种不完整的统计图:
(1)某市2015年1﹣5月份新注册小型企业一共家,请将折线统计图补充完整.
(2)该市2015年3月新注册小型企业中,只有2家是养殖企业,现从3月新注册的小型企业中随机抽取2家企业了解其经营情况.请以列表或画树状图的方法求出所抽取的2家企业恰好都是养殖企业的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】云南鲁甸发生地震后,某社区开展献爱心活动,社区党员积极向灾区捐款,如图是该社区部分党员捐款情况的条形统计图,那么本次捐款钱数的众数和中位数分别是( )
A.100元,100元
B.100元,200元
C.200元,100元
D.200元,200元
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某化妆品专卖店,为了吸引顾客,在“母亲节”当天举办了甲、乙两种品牌化妆品有奖酬宾活动,凡购物满88元,均可得到一次摇奖的机会.已知在摇奖机内装有2个红球和2个白球,除颜色外其它都相同,摇奖者必须从摇奖机内一次连续摇出两个球,根据球的颜色决定送礼金券的多少(如表)
甲种品牌化妆品 | 球 | 两红 | 一红一白 | 两白 |
礼金券(元) | 6 | 12 | 6 |
乙种品牌化妆品 | 球 | 两红 | 一红一白 | 两白 |
礼金券(元) | 12 | 6 | 12 |
(1)请你用列表法(或画树状图法)求一次连续摇出一红一白两球的概率;
(2)如果一个顾客当天在本店购物满88元,若只考虑获得最多的礼品券,请你帮助分析选择购买哪种品牌的化妆品?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】两车在途中相遇后分别按原速同时驶往甲地,两车之间的距离S(km)与慢车行驶时间t(h)之间的函数图象如图所示,
下列说法:
①甲、乙两地之间的距离为560km;
②快车速度是慢车速度的1.5倍;
③快车到达甲地时,慢车距离甲地60km;
④相遇时,快车距甲地320km
其中正确的个数是( )
A.1个
B.2个
C.3个
D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:点D是等腰直角三角形ABC斜边BC所在直线上一点(不与点B重合),连接AD.
(1)如图1,当点D在线段BC上时,将线段AD绕点A逆时针方向旋转90°得到线段AE,连接CE.求证:BD=CE,BD⊥CE.
(2)如图2,当点D在线段BC延长线上时,探究AD、BD、CD三条线段之间的数量关系,写出结论并说明理由;(3)若BD=CD,直接写出∠BAD的度数.
(3)若BD=CD,直接写出∠BAD的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,AC=BC,斜边AB=2,O是AB的中点,以O为圆心,线段OC的长为半径画圆心角为90°的扇形OEF,弧EF经过点C,则图中阴影部分的面积为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,三沙市一艘海监船某天在黄岩岛P附近海域由南向北巡航,某一时刻航行到A处,测得该岛在北偏东30°方向,海监船以20海里/时的速度继续航行,2小时后到达B处,测得该岛在北偏东75°方向,求此时海监船与黄岩岛P的距离BP的长.(参考数据:≈1.414,结果精确到0.1)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com