【题目】如图,在△ABC和△DEC中,∠ABC=∠DEC=90°,连接AD交射线EB于F,过A作AG∥DE交射线EB于点G,点F恰好是AD中点。
(1)求证:△AFG≌△DFE;
(2)若BC=CE,①求证:∠ABF=∠DEF;
②若∠BAC=30°,试求∠AFG的度数。
【答案】
(1)证明:∵AG∥DE,∴∠G=∠DEF,
∵△AGF和△DEF中,
,
∴△AGF≌△DEF(AAS)
(2)解:①证明:∵BC=CE,∴∠CBE=∠CEB,
∵∠ABF+∠CBE=90°,∠CEB+∠DEF=90°,
∴∠ABF=∠DEF;
②∵△AGF≌△DEF,
∴∠G=∠DEF,
∵∠ABF=∠DEF,
∴∠ABF=∠G,
∴AG=AB,
∵△AGF≌△DEF,
∴AG=DE,
∴DE=AB,
∵△ABC和△DEC中,
,
∴△ABC≌△DEC(SAS)
∴AC=CD,∠BAC=∠EDC,
∵AC∥DE,
∴∠EDC=∠ACD,
∴∠ACD=∠BAC=30°,
∴∠CAD=75°,
∵∠ABF=∠G,∠BAC=30°,
∴∠G=15°,
∵∠CAD=∠G+∠AFG,
∴∠AFG=60°
【解析】(1)由平行线的性质得到内错角相等,根据全等三角形的判定方法AAS,得到△AGF≌△DEF;(2)由角的和差得到∠ABF=∠DEF;由(1)得到全等三角形的对应边、对应角相等,根据SAS,得到△ABC≌△DEC,得到对应边、对应角相等,由角的和差求出∠AFG的值.
科目:初中数学 来源: 题型:
【题目】甲、乙两人参加某网站的招聘测试,测试由网页制作和语言两个项目组成,他们各自的成绩(百分制)如下表所示:
应聘者 | 网页制作 | 语言 |
甲 | 80 | 70 |
乙 | 70 | 80 |
该网站根据成绩在两人之间录用了甲,则本次招聘测试中权重较大的是_____项目.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列各关系中,符合正比例关系的是( )
A.正方形的周长P和它的一边长a
B.距离s一定时,速度v和时间t
C.圆的面积S和圆的半径r
D.正方体的体积V和棱长a
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某星期下午,小强和同学小明相约在某公共汽车站一起乘车回学校,小强从家出发先步行到车站,等小明到了后两人一起乘公共汽车回到学校.图中折线表示小强离开家的路程y(公里)和所用的时间x(分)之间的函数关系.下列说法错误的是( )
A.小强从家到公共汽车在步行了2公里
B.小强在公共汽车站等小明用了10分钟
C.公共汽车的平均速度是30公里/小时
D.小强乘公共汽车用了20分钟
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,A、B两地相距120千米,甲骑自行车以20千米/时的速度由起点A前往终点B,乙骑摩托车以40千米/时的速度由起点B前往终点A.两人同时出发,各自到达终点后停止.设两人之间的距离为s(千米),甲行驶的时间为t(小时),则下图中正确反映s与t之间函数关系的是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(0, ).
(1)求抛物线的解析式.
(2)抛物线与轴交于另一个交点为C,点D在线段AC上,已知AD=AB,若动点P从A出发沿线段AC以每秒1个单位长度的速度匀速运动,同时另一个动点Q以某一速度从B出发沿线段BC匀速运动,问是否存在某一时刻,使线段PQ被直线BD垂直平分,若存在,求出点Q的运动速度;若不存在,请说明理由.
(3)在(2)的前提下,过点B的直线与轴的负半轴交于点M,是否存在点M,使以A、B、M为顶点的三角形与相似,如果存在,请直接写出M的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】直角梯形ABCD中,∠A=∠D=90°,DC<AB,AB=AD=12,E是边AD上的一点,恰好使CE=10,并且∠CBE=45°,则AE的长是( )
A.2或8
B.4或6
C.5
D.3或7
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com