精英家教网 > 初中数学 > 题目详情

【题目】某商场销售一批名牌衬衫,平均每天可销售20件每件盈利40元.为了扩大销售,增加盈利,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价5元,商场平均每天可多售出10件,求:

1)若商场每件衬衫降价10元,则商场每天可盈利多少元?

2)若商场平均每天要盈利1250元,每件衬衫应降价多少元?

3)要使商场平均每天盈利1500元,可能吗?请说明理由.

【答案】1)商场每天可盈利1200元;(2)每件衬衫应降价15元;(3)不可能,理由见解析.

【解析】

1)根据降价10元求出每天盈利的钱即可;
2)设每件衬衫降价x元,根据题意列出方程,求出方程的解即可得到结果;
3)设每件衬衫降价y元,根据题意列出方程,求出方程的解即可得到结果.

1)降价10元,每天可多售出10件,

4010)×(20+20)=1200

答:商场每天可盈利1200元;

2)设每件衬衫降价x元,

依题意得:(40x)(20+10×)=1250

化简得:x230x+2250

解得:x1x215

答:每件衬衫应降价15元;

3)不可能,理由是:

假设每件衬衫降价y元时,商场平均每天盈利1500元,

40y)(20+10×)=1500

化简得:y230y+3500

∵△=9001400=﹣5000

∴原方程无实数根,

则不可能.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某学校为九年级数学竞赛获奖选手购买以下三种奖品,其中小笔记本每本5元,大笔记本每本7元,钢笔每支10元,购买的大笔记本的数量是钢笔数量的2倍,共花费346元,若使购买的奖品总数最多,则这三种奖品中,大笔记本购买的数量是____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】折纸飞机是我们儿时快乐的回忆,现有一张长为290mm,宽为200mm的白纸,如图所示,以下面几个步骤折出纸飞机:(说明:第一步:白纸沿着EF折叠,AB边的对应边AB′与边CD平行,将它们的距离记为x;第二步:将EMMF分别沿着MHMG折叠,使EMMF重合,从而获得边HGAB′的距离也为x),则PD=______mm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场用24000元购入一批空调然后以每台3000元的价格销售因天气炎热空调很快售完商场又以52000元的价格再次购入该种型号的空调数量是第一次购入的2但购入的单价上调了200售价每台也上调了200

1商场第一次购入的空调每台进价是多少元?

2商场既要尽快售完第二次购入的空调又要在这两次空调销售中获得的利润率不低于22%打算将第二次购入的部分空调按每台九五折出售最多可将多少台空调打折出售?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图1,在面积为3的正方形ABCD中,E、F分别是BC和CD边上的两点,AEBF于点G,且BE=1.

(1)求证:ABE≌△BCF;

(2)求出ABE和BCF重叠部分(即BEG)的面积;

(3)现将ABE绕点A逆时针方向旋转到AB′E′(如图2),使点E落在CD边上的点E′处,问ABE在旋转前后与BCF重叠部分的面积是否发生了变化?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,对角线ACBD相交于点O,点EBC的中点,AEBD于点FBHAE于点G,连接OG,则下列结论中①OFOH,②AOF∽△BGF,③tanGOH2,④FG+CHGO,正确的个数是(  )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线l的函数表达式为y=x,点O1的坐标为(10),以O1为圆心,O1O为半径画半圆,交直线l于点P1,交x轴正半轴于点O2,由弦P1O2围成的弓形面积记为S1,以O2为圆心,O2O为半径画圆,交直线l于点P2,交x轴正半轴于点O3,由弦P2O3和围成的弓形面积记为S2,以O3为圆心,O3O为半径画圆,交直线l于点P3,交x轴正半轴于点O4,由弦P3O4围成的弓形面积记为S3按此做法进行下去,其中S2018的面积为__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为推进郴州市创建国家森林城市工作,尽快实现让森林走进城市,让城市拥抱森林的构想,今年三月份,某县园林办购买了甲、乙两种树苗共1000棵,其中甲种树苗每棵40元,乙种树苗每棵50元,据相关资料表明:甲、乙两种树苗的成活率分别为85%90%

1)若购买甲、乙两种树苗共用去了46500元,则购买甲、乙两种树苗各多少棵?

2)若要使这批树苗的成活率不低于88%,则至多可购买甲种树苗多少棵?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,C是弧AB的中点,弦CDAB相交于E

1)若∠AOD45°,求证:CEED;(2)若AEEO,求tanAOD的值.

查看答案和解析>>

同步练习册答案