【题目】如图所示,在△ABC中,∠BAC=90°,AB=AC,MN是经过点A的直线,BD⊥MN,CE⊥MN,垂足分别为D,E.
(1)求证:①∠BAD=∠ACE;②BD=AE.
(2)请写出BD,CE,DE三者间的数量关系式,并证明.
【答案】见解析
【解析】
(1)①由直角三角形两锐角互余可得∠BAD+∠CAE=90°,∠ACE+∠CAE=90°,从而即可证得∠BAD=∠ACE;
②通过证明△ABD≌△CAE,根据全等三角形的对应边相等即可得BD=AE;
(2)BD=CE+DE,由△ABD≌△CAE,利用全等三角形对应边相等可得BD=AE,AD=CE,由AE=AD+DE,即可得到BD=CE+DE.
(1)证明:①∵∠BAC=90°,
∴∠BAD+∠CAE=90°,
∵CE⊥MN,∴∠ACE+∠CAE=90°,
∴∠BAD=∠ACE;
②∵BD⊥MN,CE⊥MN,
∴∠BDA=∠AEC=90°,
在△ABD和△CAE中,
,
∴△ABD≌△CAE,
∴BD=AE;
(2)BD=CE+DE.证明如下:
∵△ABD≌△CAE,
∴BD=AE,AD=CE.
∵AE=AD+DE,
∴BD=CE+DE.
科目:初中数学 来源: 题型:
【题目】现有甲、乙两个容器,分别装有进水管和出水管,两容器的进、出水速度不变,先打开乙容器的进水管,2分钟时再打开甲容器的进水管,又过2分钟关闭甲容器的进水管,再过4分钟同时打开甲容器的进、出水管.直到12分钟时,同时关闭两容器的进、出水管.打开和关闭水管的时间忽略不计.容器中的水量y(升)与乙容器注水时间x(分)之间的关系如图所示.
(1)求甲容器的进、出水速度;
(2)甲容器的进、出水管都关闭后,是否存在两容器的水量相等?若存在,求出此时的时间.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=4,AD=5,AD、AB、BC分别与⊙O相切于E、F、G三点,过点D作⊙O的切线交BC于点M,切点为N,则DM的长为( )
A.
B.2
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】先阅读下面一段文字,再回答后面的问题.
已知在平面直角坐标系内两点P1(x1,y1),P2(x2,y2),点P1,P2间的距离公式P1P2=,同时,当两点所在的直线在坐标轴上或平行于坐标轴或垂直于坐标轴时,两点间的距离公式可简化为|x2-x1|或|y2-y1|.
(1)已知A(2,4),B(-3,-8),试求A,B两点间的距离;
(2)已知各顶点坐标为A(0,6),B(-3,2),C(3,2),你能判定△ABC的形状吗?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.
(1)从图中任找两组全等三角形;
(2)从(1)中任选一组进行证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,P是BC边上不同于B,C的一动点,过点P作PQ⊥AB,垂足为Q,连接AP.若AC=3,BC=4,则△AQP的面积的最大值是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=﹣ 与x轴、y轴分别交于点A、B;点Q是以C(0,﹣1)为圆心、1为半径的圆上一动点,过Q点的切线交线段AB于点P,则线段PQ的最小是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在边长为1的正方形网格中标有A、B、C、D、E、F六个格点,根据图中标示的各点位置,与△ABC全等的是( )
A. △ACF B. △ACE C. △ABD D. △CEF
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为1个单位长度的小正方形组成的网格中,点A,B,C都是格点.
(1)将△ABC向左平移6个单位长度得到△A1B1C1,请画出△A1B1C1;
(2)将△ABC绕点O按逆时针方向旋转180°得到△A2B2C2,请画出△A2B2C2;
(3)作出△ABC关于直线l对称的△A3B3C3,使A,B,C的对称点分别是A3,B3,C3;
(4)△A2B2C2与△A3B3C3成______________△A1B1C1与△A2B2C2成_____________(填“中心对称”或“轴对称”).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com