的平方根是 .
科目:初中数学 来源: 题型:
已知A,B,C是⊙O上的三个点,四边形OABC是平行四边形,那么下列结论中错误的是( )
A.∠AOC=120°
B.四边形OABC一定是菱形
C.若连接AC,则AC=OA
D.若连接AC、BO,则AC与BO互相垂直平分
查看答案和解析>>
科目:初中数学 来源: 题型:
有五张下面分别标有数字﹣2,0,,1,3的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a,则使关于x的分工方程+2=有整数解的概率是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在△ABC中,D,E分别是AB和AC上的点,满足AD=3,AE=2,EC=1,DE∥BC,则AB=( )
A.6 B.4.5 C.2 D.1.5
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在平面直角坐标系xOy中,直线y=x+2与x轴交于点A,与y轴交于点C.抛物线y=ax2+bx+c的对称轴是x=﹣且经过A、C两点,与x轴的另一交点为点B.
(1)①直接写出点B的坐标;②求抛物线解析式.
(2)若点P为直线AC上方的抛物线上的一点,连接PA,PC.求△PAC的面积的最大值,并求出此时点P的坐标.
(3)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似?若存在,求出点M的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则∠P的度数是( )
A.60° B.65° C.55° D.50°
查看答案和解析>>
科目:初中数学 来源: 题型:
问题背景:△AOB、△COD是两个等腰直角三角形,现将直角顶点以及两直角边都重合在一起,如图1所示,点P是CD中点,连接BP并延长到E使PE=BP,连接EC,作平行四边形ACEF,小林针对平行四边形ACEF形状进行了如下探究:
观察操作:(1)小林先假设小等腰直角三角形的直角边非常小,这时三角形可以看作一个点,如图2所示,并提出猜想四边形ACEF是 ;
猜想证明:(2)小林对比图1和图2的情形,完成了(1)中的猜想,请借助图1帮他证明这个猜想.
拓展延伸:(3)如图3所示,现将等腰直角三角形COD绕点O逆时针旋转一定角度,其它条件都不改变,原来结论是否仍然成立?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com