精英家教网 > 初中数学 > 题目详情

【题目】甲、乙两人进行摸牌游戏,现有三张形状大小完全相同的牌,正面分别标有数字,将三张牌背面朝上,洗匀后放在桌子上.

1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法写出所有可能的结果;

2)若两人抽取的数字和为的倍数,则甲获胜;若抽取的数字和为的倍数,则乙获胜,这个游戏公平吗?请用概率的知识加以解释.

【答案】1)所有可能的结果有9种,列表见解析 (2)游戏不公平,理由见解析

【解析】

1)根据题意直接列表,即可得出所有可能出现的结果;

2)根据概率的意义分别求出甲、乙获胜的概率,再进行比较,即可得出答案.

(1)所有可能出现的结果如图:

从表格可以看出,总共有种结果.

2)不公平。理由如下:

从表格可以看出,两人抽取数字和为的倍数有

种,两人抽取数字和为的倍数有种.

甲获胜的概率为,乙获胜的概率为

甲获胜的概率大,游戏不公平。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知C为线段AB中点,∠ACMαQ为线段BC上一动点(不与点B重合),点P在射线CM上,连接PAPQ,记BQkCP

1)若α60°k1

①如图1,当QBC中点时,求∠PAC的度数;

②直接写出PAPQ的数量关系;

2)如图2,当α45°时.探究是否存在常数k,使得②中的结论仍成立?若存在,写出k的值并证明;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中, .在同一平面内,内部一点的距离都等于为常数),到点的距离等于的所有点组成图形

1)直接写出的值;

2)连接并延长,交于点,过点于点

①求证:

②求直线与图形的公共点个数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=(m2)x2+2mx+m3的图象与x轴有两个交点,(x10)(x20),则下列说法正确是(  )

该函数图象一定过定点(1,﹣5)

若该函数图象开口向下,则m的取值范围为:m2

m2,且1x2时,y的最大值为:4m5

m2,且该函数图象与x轴两交点的横坐标x1x2满足﹣3x1<﹣2,﹣1x20时,m的取值范围为:m11

A.①②③④B.①②④C.①③④D.②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线轴交于点,与轴交于点,抛物线经过点.

(1)求点B的坐标和抛物线的解析式;

(2)M(m,0)为x轴上一个动点,过点M垂直于x轴的直线与直线AB和抛物线分别交于点P、N,

在线段上运动,若以为顶点的三角形与相似,求点的坐标;

轴上自由运动,若三个点中恰有一点是其它两点所连线段的中点(三点重合除外),则称三点为共谐点.请直接写出使得三点成为共谐点的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 A2m),B2m-5)在平面直角坐标系中,点O为坐标原点.若ABO是直角三角形,则m的值不可能是( )

A.4B.2C.1D.0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,二次函数的图象与x轴交于AB两点,与y轴交于点C,其顶点为P,连接PAACCP,过点Cy轴的垂线l

求点PC的坐标;

直线l上是否存在点Q,使的面积等于的面积的2倍?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=90°AB=10AC=6.动点PQ从点A同时出发,点P以每秒5个单位的速度沿边AB向终点B匀速运动.点Q沿折线ACCB向终点B匀速运动,在ACCB上的速度分别是每秒6个单位、每秒8个单位.以PQ为边作正方形PQMN,使得点M与点C始终在PQ的同侧.设点P运动的时间为ts).

1)当点Q在边AC上时,用含t的代数式表示PQ的长.

2)当点M落在边BC上时,求t的值.

3)当点Q在边AC上时,设正方形PQMNABC重叠部分图形的面积为S,求St之间的函数关系式.

4)当正方形PQMN的边QMABC的边平分时,直接写出t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线yax2+bx+c的对称轴是直线x=﹣1,且过点(10).顶点位于第二象限,其部分图象如图4所示,给出以下判断:①ab0c0;②4a2b+c0;③8a+c0;④c3a3b;⑤直线y2x+2与抛物线yax2+bx+c两个交点的横坐标分别为x1x2,则x1+x2+x1x25.其中正确的个数有(  )

A.5B.4C.3D.2

查看答案和解析>>

同步练习册答案