精英家教网 > 初中数学 > 题目详情

【题目】我们把正六边形对角线的交点称为它的中心,正六边形的顶点及它的中心称作特征点,如图(1)有六个顶点和一个中心点,因此共有7个特征点,照图(1)的方式继续排列正六边形,使得相邻两个正六边形的一边重合,这样得到图(2),图(3

观察以上图形得到表:

图形的名称

特征点的个数

1

7

2

12

1)第n个图形的特征点有多少个?

2)第100个图形的特征点有多少个?

3)第几个图形有2017个特征点?请说明理由.

【答案】(1)5n+2;(2)502;(3) 2017,理由见解析

【解析】整体分析

(1)第一个图形可以看成是5×1+2=7个点,后面每一个图形比它前面的图形多5个点,由此即可得到规律;(2)由(1)中的规律进行计算;(3)根据(1)中的规律计算,注意n要是正整数.

:(1∵图1中有5×1+2=7个点,

2中有5×2+2=12个点,

……

∴图n中有5n+2个特征点;

2)当n=100时,5n+2=502

即第100个图形的特征点有502个;

3)由5n+2=2017n=403

即第403个图形有2017个特征点.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知如图所示

1作出ABC关于y轴对称的ABC并写出ABC三个顶点的坐标

2)在x轴上画出点P使PA+PC最小并直接写出此时PA+PC的最小值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某工厂接受了20天内生产1200GH型电子产品的总任务. 已知每台GH型产品由4G型装置和3H型装置配套组成. 工厂现有80名工人,每个工人每天能加工6G型装置或3H型装置.工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的GH型装置数量正好全部配套组成GH型产品.

1按照这样的生产方式,工厂每天能配套组成多少套GH型电子产品?

2为了在规定期限内完成总任务,工厂决定补充一些新工人,这些新工人只能独立进行G 型装置的加工,且每人每天只能加工4G型装置. 请问至少需要补充多少名新工人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读理解

,即23

的整数部分为2,小数部分为2

112

1的整数部分为1

1的小数部分为2

解决问题:已知:a3的整数部分,b3的小数部分,

求:(1ab的值;

2)(﹣a3+b+42的平方根.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察下列关于自然数的等式:

a132-12=8×1

a252-32=8×2

a372-52=8×3……

根据上述规律解决下列问题

写出第a4个等式___________

写出你猜想的第an个等式(用含n的式子表示),并验证其正确性;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了从甲、乙两名选手中选拔一人参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,为了比较两人的成绩,制作了如下统计图表:

甲、乙射击成绩统计表

平均数

中位数

方差

命中10环的次数

7

1

(1)请补全上述图表(请直接在表中填空和补全折线图);

(2)如果规定成绩较稳定者胜出,你认为谁将胜出?说明你的理由;

(3)如果希望(2)中的另一名选手胜出,根据图表中的信息,应该制定怎样的评判规则?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,ADBC,ECD的中点,连接AE、BE,BEAE,延长AEBC的延长线于点F.

求证:(1)FC=AD;

(2)AB=BC+AD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一张三角形纸片ABC(如图甲),其中AB=AC.将纸片沿过点B的直线折叠,使点C落到AB边上的E点处,折痕为BD(如图乙).再将纸片沿过点E的直线折叠,点A恰好与点D重合,折痕为EF(如图丙).原三角形纸片ABC中,∠ABC的大小为______°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1ABC沿BAC的平分线AB1折叠剪掉重叠部分将余下部分沿B1A1C的平分线A1B2折叠剪掉重叠部分将余下部分沿BnAnC的平分线AnBn+1折叠Bn与点C重合.无论折叠多少次只要最后一次恰好重合我们就称BACABC的好角

小丽展示了确定BACABC的好角的两种情形.情形一如图2沿等腰三角形ABC顶角BAC的平分线AB1折叠B与点C重合情形二如图3沿ABCBAC的平分线AB1折叠剪掉重叠部分将余下部分沿B1A1C的平分线A1B2折叠此时点B1与点C重合

1小丽经过三次折叠发现了BACABC的好角请探究BC不妨设BC之间的等量关系

2根据以上内容猜想若经过n次折叠BACABC的好角BC不妨设BC之间的等量关系为

3如果一个三角形的最小角是15°且满足该三角形的三个角均是此三角形的好角则此三角形另两个角的度数为

查看答案和解析>>

同步练习册答案