【题目】已知二次函数y1=x2+mx+n的图象经过点P(﹣3,1),对称轴是经过(﹣1,0)且平行于y轴的直线.
(1)求m,n的值,
(2)如图,一次函数y2=kx+b的图象经过点P,与x轴相交于点A,与二次函数的图象相交于另一点B,若点B与点M(﹣4,6)关于抛物线对称轴对称,求一次函数的表达式.
(3)根据函数图象直接写出y1>y2时x的取值范围.
【答案】(1)2,;(2)y=x+4;(3)x<﹣3或x>2.
【解析】
(1)将点P(-3,1)代入二次函数解析式得出3m﹣n=8,然后根据对称轴过点(-1,0)得出对称轴为x=-1,据此求出m的值,然后进一步求出n的值即可;
(2)根据一次函数经过点P(﹣3,1),得出1=﹣3k+b,且点B与点M(﹣4,6)关于x=﹣1对称,所以B(2,6),所以6=2k+b,最后求出k与b的值即可;
(3)y1>y2,则说明 y1的函数图像在y2函数图像上方,据此根据图像直接写出范围即可.
(1)由二次函数经过点P(﹣3,1),
∴1=9﹣3m+n,
∴3m﹣n=8,
又∵对称轴是经过(﹣1,0)且平行于y轴的直线,
∴对称轴为x=﹣1,
∴﹣=﹣1,
∴m=2,
∴n=﹣2;
(2)∵一次函数经过点P(﹣3,1),
∴1=﹣3k+b,
∵点B与点M(﹣4,6)关于x=﹣1对称,
∴B(2,6),
∴6=2k+b,
∴k=1,b=4,
∴一次函数解析式为y=x+4;
(3)由图象可知,x<﹣3或x>2时,y1>y2.
科目:初中数学 来源: 题型:
【题目】(2011贵州安顺,16,4分)如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB边的C′点,那么△ADC′的面积是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某单位要建一个面积为48 m2的小仓库,小仓库有一边靠墙(墙长10m),并在与墙平行的一边开一道宽1 m的门,现有能围成19 m的木板,求小仓库的长与宽?
(注意:仓库靠墙的那一边不能超过墙长).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明将小球沿地面成一定角度的方向击出,在不考虑空气阻力的条件下,小球的飞行高度y(m)与它的飞行时间x(s)满足二次函数关系,y与x的几组对应值如表所示:
(1)求y关于x的函数解析式(不要求写x的取值范围);
(2)问:小球的飞行高度能否达到20.5m?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我市茶叶专卖店销售某品牌茶叶,其进价为每千克 240 元,按每千克 400 元出售,平均每周可售出 200 千克,后来经过市场调查发现,单价每降低 10 元,则平均每周的销售量可增加 40 千克,若该专卖店销售这种品牌茶叶要想平均每周获利 41600 元,请回答:
(1)每千克茶叶应降价多少元?
(2)在平均每周获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的 几折出售?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市去年成功举办2018郴州国际休闲旅游文化节,获评“全国森林旅游示范市”.某市有A,B,C,D,E五个景区很受游客喜爱.一旅行社对某小区居民在暑假期间去以上五个景区旅游(只选一个景区)的意向做了一次随机调查统计,并根据这个统计结果制作了如下两幅不完整的统计图:
(1)该小区居民在这次随机调查中被调查到的人数是 人, ,并补全条形统计图;
(2)若该小区有居民1200人,试估计去B地旅游的居民约有多少人?
(3)小军同学已去过E地旅游,暑假期间计划与父母从A,B,C,D四个景区中,任选两个去旅游,求选到A,C两个景区的概率.(要求画树状图或列表求概率)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,A、P、B、C是⊙O上的四个点,∠APC=∠CPB=60°.
(1)求证:PA+PB=PC;
(2)若BC=,点P是劣弧AB上一动点(异于A、B),PA、PB是关于x的一元二次方程x2﹣mx+n=0的两根,求m的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,抛物线经过点,、,,其中、是方程的两根,且,过点的直线与抛物线只有一个公共点
(1)求、两点的坐标;
(2)求直线的解析式;
(3)如图2,点是线段上的动点,若过点作轴的平行线与直线相交于点,与抛物线相交于点,过点作的平行线与直线相交于点,求的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com