【题目】如图,已知一次函数与反比例函数的图象相交于点,与x轴相交于点B.
填空:n的值为______,k的值为______;
以AB为边作菱形ABCD,使点C在x轴正半轴上,点D在第一象限,求点D的坐标;
观察反比例函数的图象,当时,请直接写出自变量x的取值范围.
【答案】3;12
【解析】试题分析:(1)把点A(4,n)代入一次函数y=x﹣3,得到n的值为3;再把点A(4,3)代入反比例函数y=,得到k的值为12;
(2)根据坐标轴上点的坐标特征可得点B的坐标为(2,0),过点A作AE⊥x轴,垂足为E,过点D作DF⊥x轴,垂足为F,根据勾股定理得到AB=,根据AAS可得△ABE≌△DCF,根据菱形的性质和全等三角形的性质可得点D的坐标;
(3)根据反比例函数的性质即可得到当y≥﹣2时,自变量x的取值范围.
试题解析:解:(1)把点A(4,n)代入一次函数y=x﹣3,可得n=×4﹣3=3;
把点A(4,3)代入反比例函数y=,可得3=,解得:k=12.
(2)∵一次函数y=x﹣3与x轴相交于点B,∴x﹣3=0,解得:x=2,∴点B的坐标为(2,0),如图,过点A作AE⊥x轴,垂足为E,过点D作DF⊥x轴,垂足为F.∵A(4,3),B(2,0),∴OE=4,AE=3,OB=2,∴BE=OE﹣OB=4﹣2=2.在Rt△ABE中,AB===.∵四边形ABCD是菱形,∴AB=CD=BC=,AB∥CD,∴∠ABE=∠DCF.∵AE⊥x轴,DF⊥x轴,∴∠AEB=∠DFC=90°.在△ABE与△DCF中,,∴△ABE≌△DCF(ASA),∴CF=BE=2,DF=AE=3,∴OF=OB+BC+CF=2++2=4+,∴点D的坐标为(4+,3).
(3)当y=﹣2时,﹣2=,解得:x=﹣6.
故当y≥﹣2时,自变量x的取值范围是x≤﹣6或x>0.
故答案为:3,12.
科目:初中数学 来源: 题型:
【题目】如图,一条公路的转弯处是一段圆弧().
(1)用直尺和圆规作出所在圆的圆心;(要求保留作图痕迹,不写作法)
(2)若的中点到的距离为m,m,求所在圆的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,连接BD,且BD=CD,过点A作AM⊥BD于点M,过点D作DN⊥AB于点N,且DN=,在DB的延长线上取一点P,满足∠ABD=∠MAP+∠PAB,则AP=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法正确的有( )
(1)有理数分为正有理数和负有理数
(2)如果|a|=a,那么a>0
(3)如果a大于b,那么a的倒数小于b的倒数
(4)若ab>0,则的值为3或﹣3
A.0个B.1个C.2个D.3个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知张强家、体育场、文具店在同一直线上,下面的图象反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家.图中表示时间,表示张强离家的距离.
根据图象解答下列问题:
(1)体育场离张强家多远?张强从家到体育场用了多少时间?
(2)体育场离文具店多远?
(3)张强在文具店停留了多少时间?
(4)求张强从文具店回家过程中与的函数解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某城市居民用水实行阶梯收费,每户每月用水量如果未超过20吨,按每吨元收费如果超过20吨,未超过的部分按每吨元收费,超过的部分按每吨元收费设某户每月用水量为x吨,应收水费为y元.
设某户居民每月用水量为m吨,则应收水费为______元用含m的代数式表示;
设某户居民每月用水量为m吨,则应收水费为______元用含m的代数式表示;
若该城市某户5月份水费平均为每吨元,求该户5月份用水多少吨?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,∠A=60°,点E、F分别为AD、DC上的动点,∠EBF=60°,点E从点A向点D运动的过程中,AE+CF的长度( )
A. 逐渐增加 B. 逐渐减小
C. 保持不变且与EF的长度相等 D. 保持不变且与AB的长度相等
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个批发兼零售的文具店规定:凡一次购买铅笔300枝以上,(不包括300枝),可以按批发价付款,购买300枝以下,(包括300枝)只能按零售价付款。小明来该店购买铅笔,如果给八年级学生每人购买1枝,那么只能按零售价付款,需用120元,如果购买60枝,那么可以按批发价付款,同样需要120元,
(1) 这个八年级的学生总数在什么范围内?
(2) 若按批发价购买6枝与按零售价购买5枝的款相同,那么这个学校八年级学生有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】商场销售一款西服和领带,西服每套定价600元,领带每条定价80元,商场在黄金周期间开展促销活动,向顾客提供两种优惠方案:①买一套西服送一条领带;②西装和领带都按定价的90%付款.现某客户要购买西装20套,领带x条(x>20).
(1)若该客户按方案①购买,需付款多少元?(用含x的代数式表示)
(2)若该客户按方案②购买,需付款多少元?(用含x的代数式表示)
(3)若x=30,通过计算说明此时按哪种方案购买较为合算?
(4)是否存在这样的x值,两种付款方式的钱数一样多?如存在,请求这出这个值;如不存在,请说明理由?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com