精英家教网 > 初中数学 > 题目详情

【题目】ABC中,∠A=30°,AC=8,B=90°,点DAB上,BD=,点P在△ABC的边上,则当AP=2PD时,PD的长为____________________

【答案】 3

【解析】

分点P在线段AB上,点P在线段AC上和点P在线段BC上三种情况求解即可.

A=30°AC=8B=90°

BC=4AB=,

AD=.

当点P在线段AB上时,如图1

AP=2PDAP+PD=AD=3,

PD=;

当点P在线段AC上时,如图2

A=30°

PDBC时,AP=2PD

PD:BC=AD:AB

PD=;

当点P在线段BC上时,如图3

AP2=AB2+BP2BP2=PD2-BD2

AP2=AB2+ PD2-BD2

∴4 PD2= (4)2+ PD2-()2

PD2=15,

PD=PD=(舍去).

故答案为: 3.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】甲车从A地驶往B地,同时乙车从B地驶往A地,两车相向而行,匀速行驶,甲车距B地的距离y(km)与行驶时间x(h)之间的函数关系如图所示,乙车的速度是60km/h

(1)求甲车的速度;

(2)当甲乙两车相遇后,乙车速度变为a(km/h),并保持匀速行驶,甲车速度保持不变,结果乙车比甲车晚38分钟到达终点,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是置于水平地面上的一个球形储油罐,小敏想测量它的半径、在阳光下,他测得球的影子的最远点A到球罐与地面接触点B的距离是10(如示意图,AB10);同一时刻,他又测得竖直立在地面上长为1米的竹竿的影子长为2米,那么,球的半径是________米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,ABC的顶点坐标分别为A(-2,2),B(-4,0),C(-4;-4),

(1)y轴右侧,以O为位似中心,画出A'B'C′,使它与ABC的相似比为1:2;

(2)根据(1)的作图,sinA'C'B′=__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,MN表示一段笔直的高架道路,线段AB表示高架道路旁的一排居民楼,已知点A到MN的距离为15米,BA的延长线与MN相交于点D,且∠BDN=30°,假设汽车在高速道路上行驶时,周围39米以内会受到噪音(XRS)的影响.

(1)过点A作MN的垂线,垂足为点H,如果汽车沿着从M到N的方向在MN上行驶,当汽车到达点P处时,噪音开始影响这一排的居民楼,那么此时汽车与点H的距离为多少米?

(2)降低噪音的一种方法是在高架道路旁安装隔音板,当汽车行驶到点Q时,它与这一排居民楼的距离QC为39米,那么对于这一排居民楼,高架道路旁安装的隔音板至少需要多少米长?(精确到1米)(参考数据:≈1.7)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】期末考试后,某市第一中学为了解本校九年级学生期末考试数学学科成绩情况,决定对该年级学生数学学科期末考试成绩进行抽样分析,已知九年级共有12个班,每班48名学生.请按要求回答下列问题:

收集数据

(1)若要从全年级学生中抽取一个96人的样本,你认为以下抽样方法中比较合理的有 .(只要填写序号即可)

①随机抽取两个班级的96名学生;②在全年级学生中随机抽取96名学生;③在全年级12个班中分别各随机抽取8名学生;④从全年级学生中随机抽取96名男生.

整理数据

(2)将抽取的96名学生的成绩进行分组,绘制频数分布表和成绩分布扇形统计图(不完整)如下.请根据图表中数据填空:

C类和D类部分的圆心角度数分别为

②估计全年级AB类学生大约一共有 名.

分析数据

(3)学校为了解其它学校教学情况,将同层次的第一、第二两所中学的抽样数据进行对比,得下表:

学校

平均数(分)

极差(分)

方差

AB类的频率和

第一中学

71

52

432

0.75

第二中学

71

80

497

0.82

你认为哪所学校的教学效果较好?结合数据,请提出一个合理解释来支持你的观点.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC中,点D在边BC上,∠DABB,点E在边AC上,满足AE·CDAD·CE.

(1)求证:DEAB

(2)如果点FDE延长线上一点,且BDDFAB的比例中项,连接AF.求证:DFAF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线经过点A(﹣1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线交抛物线于点Q,交直线BD于点M.

(1)求该抛物线所表示的二次函数的表达式;

(2)点P在线段AB上运动的过程中,是否存在点Q,使得△BOD∽△QBM?若存在,求出点Q的坐标;若不存在,请说明理由.

(3)已知点F(0,),点P在x轴上运动,试求当m为何值时以D、M、Q、F为顶点的四边形是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个不透明的口袋中装有4个分别标有数1,2,3,4的小球,它们的形状、大小完全相同,小红先从口袋里随机摸出一个小球记下数为x,小颖在剩下的3个球中随机摸出一个小球记下数为y,这样确定了点P的坐标(x,y).

(1)小红摸出标有数3的小球的概率是多少?.

(2)请你用列表法或画树状图法表示出由x,y确定的点P(x,y)所有可能的结果.

(3)求点P(x,y)在函数y=﹣x+5图象上的概率.

查看答案和解析>>

同步练习册答案