精英家教网 > 初中数学 > 题目详情

【题目】一辆汽车在公路上行驶,看到里程表上是一个两位数,1小时后其里程表还是一个两位数,且刚好它的十位数字与个位数字与第一次看到的两位数的十位数字与个位数字颠倒了位置,又过了1小时后看到里程表是一个三位数,它是第一次看到的两位数中间加一个0,则汽车的速度是( )千米/小时.

A. 35B. 40C. 45D. 50

【答案】C

【解析】

设第一次他看到的两位数的个位数为x,十位数为y,汽车行驶速度为v,第一次看到的两位数为10y+x,行驶一小时后看到的两位数为10x+y,第三次看到的三位数为100y+x,由汽车均速行驶可得三段时间的路程相等,即可列出两个方程求解即可.由速度=,求得答案.

设第一次他看到的两位数的个位数为,十位数为,汽车行驶速度为,根据题意得:

解得:

1-9内的自然数,

即两位数为16.

即:第一次看到的两位数是16.

第二次看到的两位数是61.

第三次看到的两位数是106.

则汽车的速度是:(千米/小时).

故选:C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知直线AB AB 之间的距离为 2 CD 是直线两个动点(点 C D 点的左侧),且 AB=CD=5.连接 ACBCBD,将ABC 沿 BC 折叠得到A′BC.若以 A′CBD 为顶点的四边形为矩形,则此矩形相邻两边之和为____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某餐厅中,一张桌子可坐6人,有如图所示的两种摆放方式:

(1)当有n张桌子时,两种摆放方式各能坐多少人?

(2)一天中午餐厅要接待98位顾客共同就餐,但餐厅只有25张这样的餐桌.若你是这个餐厅的经理,你打算选择哪种方式来摆放餐桌?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(34),DOA的中点,点EAB上,当△CDE的周长最小时,点E的坐标为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(l)操作:如图1,点O为线段MN的中点,直线PQ与MN相交于点O,请利用图1画出一对以点O为对称中心的全等三角形;根据上述操作得到的经验完成下列探究活动:

(2)探究一:如图2,在四边形ABCD中,AB∥DC,E为BC边的中点,∠BAE=∠EAF,AF与DC的延长线相交于点F.试探究线段AB与AF,AF,CF之间的等量关系,并证明你的结论;

(3)探究二:如图3 ,DE,BC相交于点E,BA交DE于点A,且BE:EC=1:2,∠BAE=∠EDF,CF∥AB.若AB=5,CF=1,求DF的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,点DBC边上的一点,∠B=50°,∠BAD=30°,将ABD沿AD折叠得到AEDAEBC交于点F

1)填空:∠AFC=______度;

2)求∠EDF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,放置的一副三角尺,将含45°角的三角尺斜边中点O为旋转中心,逆时针旋转30°得到如图2,连接OB、OD、AD.

(1)求证:AOB≌△AOD;

(2)试判定四边形ABOD是什么四边形,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,BC=2AB,对角线相交于O,过C点作CE⊥BDBDE点,HBC中点,连接AHBDG点,交EC的延长线于F点,下列5个结论:①EH=AB;②∠ABG=∠HEC;③△ABG≌△HEC;④SGAD=S四边形GHCE;⑤CF=BD.正确的有(  )个.

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算题:

1)解方程组:

2)解不等式组(并把解集在数轴上表示出来).

查看答案和解析>>

同步练习册答案