精英家教网 > 初中数学 > 题目详情

【题目】已知:如图,△ABC中,AD⊥BC于D,AD=200,∠B=30°,∠C=45°.求BC的长.

【答案】解:∵AD⊥BC于点D, ∴∠ADB=∠ADC=90°.
在Rt△ABD中,∵AD=200,∠B=30°,
∴BD= AD=200
在Rt△ADC中,∵∠C=45°,∠ADC=90°,
∴DC=AD=200,
∴BC=BD+DC=200 +200.
【解析】首先解Rt△ABD,求出BD的长度,再解Rt△ADC,求出DC的长度,然后由BC=BD+DC即可求解.
【考点精析】本题主要考查了解直角三角形的相关知识点,需要掌握解直角三角形的依据:①边的关系a2+b2=c2;②角的关系:A+B=90°;③边角关系:三角函数的定义.(注意:尽量避免使用中间数据和除法)才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知A(4,0),B(3,3),以OA、AB为边作OABC,则若一个反比例函数的图象经过C点,则这个反比例函数的表达式为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】当x<0时,反比例函数 的图像(
A.在第二象限内,y随x的增大而减小
B.在第二象限内,y随x的增大而增大
C.在第三象限内,y随x的增大而减小
D.在第三象限内,y随x的增大而增大

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的范围是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】顶点为(﹣ ,﹣ )的抛物线与y轴交于点A(0,﹣4),E(0,b)(b>﹣4)为y轴上一动点,过点E的直线y=x+b与抛物线交于B、C两点.
(1)求抛物线的解析式;
(2)①如图1,当b=0时,求证:E是线段BC的中点;
②当b≠0时,E还是线段BC的中点吗?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,甲、乙两人分别从A(1, ),B(6,0)两点同时出发,点O为坐标原点,甲沿AO方向,乙沿BO方向均以4km/h的速度行驶,th后,甲到达M点,乙到达N点.

(1)请说明甲、乙两人到达O点前,MN与AB不可能平行;
(2)当t为何值时,△OMN∽△OBA;
(3)甲、乙两人之间的距离为MN的长,设s=MN2 , 直接写出s与t之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=﹣x2+2x+m.
(1)如果二次函数的图像与x轴有两个交点,求m的取值范围;
(2)如图,二次函数的图像过点A(3,0),与y轴交于点B,求直线AB与这个二次函数的解析式;

(3)在直线AB上方的抛物线上有一动点D,当D与直线AB的距离DE最大时,求点D的坐标,并求DE最大距离是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】设点Q到图形W上每一个点的距离的最小值称为点Q到图形W的距离.例如正方形ABCD满足A(1,0),B(2,0),C(2,1),D(1,1),那么点O(0,0)到正方形ABCD的距离为1.

(1)如果⊙P是以(3,4)为圆心,1为半径的圆,那么点O(0,0)到⊙P的距离为
(2)求点M(3,0)到直线y=2x+1的距离;
(3)如果点N(0,a)到直线y=2x+1的距离为3,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市某工艺品厂生产一款工艺品、已知这款工艺品的生产成本为每件60元. 经市场调研发现:该款工艺品每天的销售量y(件)与售价x(元)之间存在着如下表所示的一次函数关系.

售价x(元)

70

90

销售量y(件)

3000

1000

(利润=(售价﹣成本价)×销售量)
(1)求销售量y(件)与售价x(元)之间的函数关系式;
(2)你认为如何定价才能使工艺品厂每天获得的利润为40000元?

查看答案和解析>>

同步练习册答案