精英家教网 > 初中数学 > 题目详情
4.当一个多位数的位数为偶数时,在其中间位插入一位数k,(0≤k≤9,且k为整数)得到一个新数,我们把这个新数称为原数的关联数.如:435729中间插入数字6可得435729的一个关联数4356729,其中435729=729+435×1000,4356729=729+6×1000+435×10000.
请阅读以上材料,解决下列问题.
(1)若一个三位关联数是原来两位数的9倍,请找出满足这样的三位关联数;
(2)对于任何一个位数为偶数的多位数,中间插入数字m,得其关联数(0≤m≤9,且m为3的倍数),试证明:所得的关联数与原数10倍的差一定能被3整除.

分析 (1)设原数为ab=10a+b,其关联数为amb=100a+10m+b,根据关联数为原数的9倍即可得出b与a、m之间的关系,结合a、b、m的特点即可得出结论;
(2)设原数前n位数为A、后n位数为B,则关联数为$\overline{AmB}$,原数10倍为$\overline{AB0}$,将关联数与原数10倍相减得:m•10n-9B,再根据m和9均为3的倍数,即可证出结论.

解答 (1)解:设原数为ab=10a+b,其关联数为amb=100a+10m+b,
∵amb=9ab,
∴100a+10m+b=9×(10a+b),
∴5a+5m=4b,
∴5(a+m)=4b,
∵b、m为整数,a为正整数,且a、b、m均为一位数,
∴b=5,a+m=4,
∴a=1,m=3;a=2,m=2;a=3,m=1;a=4,b=0.
∴满足条件的三位关联数为135、225、315和405.
(2)证明:设原数前n位数为A、后n位数为B,则关联数为$\overline{AmB}$,原数10倍为$\overline{AB0}$,
将关联数与原数10倍相减得:m•10n-9B.
∵m和9均为3的倍数,
∴关联数与原数10倍的差一定能被3整除.

点评 本题考查了约数与倍数以及有理数的乘法,解题的关键是:(1)找出b与a、m之间的关系;(2)将关联数与原数的10做差得出m•10n-9B.本题属于中档题,难度不大,解决该题型题目时,设出合适的未知量是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

18.若反比例函数y=$\frac{k}{x}$的图象经过点P(a,b),且a,b为一元二次方程x2+kx+4=0的两根,那么点P的坐标是(-2,-2),到原点的距离为2$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.抛物线y=-$\frac{1}{4}$x2+$\frac{1}{2}$x+2与x轴交于A、B两点,与y轴交于点C.
(1)在抛物线上求一点P,使△ABC的面积等于△ACP的面积;
(2)在抛物线上是否存在一点M,使△MAO的面积等于△COM的面积,若次拿在,求出M的坐标,若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.计算:
(1)(2$\frac{1}{4}$)0.5+(0.1)-2-(2$\sqrt{2}$)${\;}^{-\frac{2}{3}}$
(2)(0.5)-3+($\sqrt{3}$-1)0

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.如图,AD是△ABC的中线,E,F分别是AD及其延长线上的点,且DE=DF,连接BF,CE,下列说法:①BF=CE;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图①,正方形ABCD边长为4cm,点A′从点D出发,以每秒1cm的速度沿射线DC向右运动,连结AA′,线段AA′的中垂线分别与直线DC、AA′、AB交于点E、P、F,连结AE、A′F,设点A′的运动时间为t秒.
(1)四边形AEA′F是否为菱形,说明理由;
(2)直接写出四边形AEA′F与正方形ABCD重叠部分形状分别为三角形、四边形、五边形时,所对应的t的取值范围;
(3)如图②,在点A′从点D出发的同时,点M、N从点C出发,点M以每秒2cm的速度在边CD上做往返运动,点N以每秒0.5cm的速度沿CB方向运动,到达点B后停止.
①求出运动过程中点A′、M相遇时的t的值;
②若点E到达点C时,三个动点均停止运动,直接写出运动过程中线段MN所在直线垂直于线段AA′所在直线时t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.某校计划在一块长8m,宽6m的矩形草坪的中间划出面积为16m2的矩形栽花,使这个矩形四周留地宽度一样.则这个宽度应为(  )
A.$\frac{1+\sqrt{5}}{2}$mB.$\frac{1-\sqrt{17}}{2}$mC.$\frac{7+\sqrt{17}}{2}$mD.$\frac{7-\sqrt{17}}{2}$m

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.已知抛物线C1:y=x2-2(m+2)x+m2-10的顶点A到y轴的距离为3.
(1)求顶点A的坐标及m的值;
(2)若抛物线与x轴交于C、D两点.点B在抛物线C1上,且S△BCD=6$\sqrt{2}$,求点B的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.先化简,再求值,(x-2+$\frac{3}{x+2}$)÷$\frac{{x}^{2}+2x+1}{x+2}$,其中x=(π-2015 )0-$\sqrt{4}$+($\frac{1}{2}$)-1

查看答案和解析>>

同步练习册答案