精英家教网 > 初中数学 > 题目详情

【题目】如图,O是ABC的外接圆,ABC=45°,AD是O的切线交BC的延长线于D,AB交OC于E

1求证:ADOC;

2若AE=2,CE=2O的半径和线段BE的长

【答案】1证明见解析;2

【解析】

试题分析:1连结OA,根据切线的性质得到OAAD,再根据圆周角定理得到AOC=2ABC=90°,然后根据平行线的判定即可得到结论;

2O的半径为R,则OA=R,OE=R-2,AE=2,在RtOAE中根据勾股定理可计算出R=4;作OHAB于H,根据垂径定理得AH=BH,再利用面积法计算出OH=,然后根据勾股定理计算出AH=,则HE=AE-AH=2-=,再利用BE=BH-HE进行计算

试题解析:1连结OA,如图,

AD是O的切线,

OAAD,

∵∠AOC=2ABC=2×45°=90°

OAOC,

ADOC;

2O的半径为R,则OA=R,OE=R-2,AE=2

在RtOAE中,AO2+OE2=AE2

R2+R-22=22,解得R=4,

作OHAB于H,如图,OE=OC-CE=4-2=2,

则AH=BH,

OHAE=OEOA,

OH==

在RtAOH中,AH=

HE=AE-AH=2-=

BH=

BE=BH-HE=-=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】六一儿童节前夕,某县教育局准备给留守儿童赠送一批学习用品,先对红星小学的留守儿童人数进行抽样统计,发现各班留守儿童人数分别为6名,7名,8名,10名,12名这五种情形,并绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:

(1)该校有_____个班级,补全条形统计图;

(2)求该校各班留守儿童人数数据的平均数,众数与中位数;

(3)若该镇所有小学共有60个教学班,请根据样本数据,估计该镇小学生中,共有多少名留守儿童.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图为二次函数y=ax2+bx+c的图象,在下列说法中:①ac<0;a+b+c>0;③方程ax2+bx+c=0的根是x1=﹣1,x2=3; b2﹣4ac>0;⑤当x>1时,yx的增大而增大;正确的说法有(  )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,DE平分∠ADB,则∠B=( )

A. 40° B. 30° C. 25° D. 22.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,AB⊙O的一条弦,OD⊥AB,垂足为C,交⊙O于点D,点E⊙O上.

1)若∠AOD=52°,求∠DEB的度数;

2)若OC=3OA=5,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=ACBC=4,面积是16AC的垂直平分线EF分别交ACAB边于点EF,若点DBC边上的中点,点M为线段EF一动点,则CDM周长的最小值为(

A.4B.8C.10D.12

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,顶点为C的抛物线y=ax2+bx(a>0)经过点Ax轴正半轴上的点B,连接OC、OA、AB,已知OA=OB=2,∠AOB=120°.

(1)求这条抛物线的表达式;

(2)过点CCE⊥OB,垂足为E,点Py轴上的动点,若以O、C、P为顶点的三角形与△AOE相似,求点P的坐标;

(3)若将(2)的线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<120°),连接E′A、E′B,求E′A+E′B的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等边三角形的边长为4,的中心,.绕点旋转,分别交线段两点,连接,给出下列四个结论:;;③四边形的面积始终等于;④△周长的最小值为6,上述结论中正确的个数是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在每个小正方形的边长均为1的方格纸中有线段AB,其中点AB均在小正方形的顶点上.

1)在方格纸中画出以BC为底的钝角等腰三角形ABC,且点C在小正方形的顶点上;

2)将(1)中的△ABC绕点C逆时针旋转90°得到△DEC(点A的对应点是点D,点B的对应点是点E),画出△CDE

3)在(2)的条件下,连接BE,请直接写出△BCE的面积.

查看答案和解析>>

同步练习册答案