【题目】先阅读理解下面的例题,再按要求解答下列问题:
例题:解一元二次不等式,
解:∵,∴可化为,
由有理数的乘法法则“两数相乘,同号得正”,有
(1)或(2)
解不等式组(1),得,解不等式组(2),得,
故的解集为或,
即一元二次不等式的解集为或.
问题:(1)一元二次不等式的解集为______.
(2)求分式不等式的解集.
科目:初中数学 来源: 题型:
【题目】(1)如图1,将长方形ABCD折叠,使BC落在对角线BD上,折痕为BE,点C落在点C′处,若∠ADB=48°,则∠DBE的度数为_______.
(2)小明手中有一张长方形纸片ABCD,AB=12,AD=27.
(画一画)
如图2,点E在这张长方形纸片的边AD上,将纸片折叠,使AB落在CE所在直线上,折痕设为MN(点M,N分别在边AD,BC上),利用直尺和圆规画出折痕MN(不写作法,保留作图痕迹,).
(算一算)
如图3:点F在这张长方形纸片的边BC上,将纸片折叠,使FB落在线段FD上,折痕为GF,点A、B分别落在点E、H处,若△DCF的周长等于48,求DH和AG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠A=30°,∠B=60°,CF平分∠ACB.
(1)求∠ACE的度数.
(2)若CD⊥AB于点D,∠CDF=75°,求证:△CFD是直角三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠BAO=90°,AB=8,动点P在射线AO上,以PA为半径的半圆P交射线AO于另一点C,CD∥BP交半圆P于另一点D,BE∥AO交射线PD于点E,EF⊥AO于点F,连接BD,设AP=m.
(1)求证:∠BDP=90°.
(2)若m=4,求BE的长.
(3)在点P的整个运动过程中.
①当AF=3CF时,求出所有符合条件的m的值.
②当tan∠DBE=时,直接写出△CDP与△BDP面积比.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A(-1,0),B(0,2),点C在x轴上,且∠ABC=90°.
(1)求点C的坐标;
(2)求经过A,B,C三点的抛物线的表达式;
(3)在(2)中的抛物线上是否存在点P,使∠PAC=∠BCO?若存在,求出点P的坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知中,AB=AC=10 cm,BC=8cm,点D是AB的中点,点E在AC上,AE=6 cm,点P在BC上以1 cm/s速度由B点向C点运动,点Q在AC上由A点向E点运动,两点同时出发,当其中一点到达终点时,两点同时停止运动.
(1)在运动过程中,若点Q速度为2 cm/s,则能否形成以为顶角的等腰三角形?若可以,请求出运动时间t, 若不可以,请说明理由;
(2)当点Q速度为多少时,能够使 与全等?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】四张扑克牌的牌面如图1,将扑克牌洗匀后,如图2背面朝上放置在桌面上,小明和小亮设计了A、B两种游戏方案:
方案A:随机抽一张扑克牌,牌面数字为5时小明获胜;否则小亮获胜.
方案B:随机同时抽取两张扑克牌,两张牌面数字之和为偶数时,小明获胜;否则小亮获胜.
请你帮小亮选择其中一种方案,使他获胜的可能性较大,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b与反比例函数y=的图象相交于A(2,3),B(﹣3,n)两点.
(1)求一次函数与反比例函数的解析式;
(2)根据所给条件,请直接写出不等式kx+b>的解集;
(3)过点B作BC⊥x轴,垂足为C,求S△ABC.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com