【题目】如图,在△ABC中,∠A=30°,∠B=60°,CF平分∠ACB.
(1)求∠ACE的度数.
(2)若CD⊥AB于点D,∠CDF=75°,求证:△CFD是直角三角形.
【答案】(1)∠ACE=45°;(2)详见解析.
【解析】
(1)先根据内角和定理求得∠ACB=90°,再由角平分线性质可得答案;
(2)根据CD⊥AB知∠BCD=90°-∠B=30°,∠FCD=∠ECB-∠BCD=15°,结合∠CDF=75°可得∠CFD=180°-∠FCD-∠CDF=90°,即可得证.
解:(1)∵∠A=30°,∠B=60°,
∴∠ACB=180°-∠A-∠B=90°,
∵CE平分∠ACB,
∴∠ACE=∠BCE=∠ACB=45°;
(2)∵CD⊥AB,
∴∠CDB=90°,
∴∠BCD=90°-∠B=30°,
∴∠FCD=∠ECB-∠BCD=15°,
∵∠CDF=75°,
∴∠CFD=180°-∠FCD-∠CDF=90°,
∴△CFD是直角三角形.
科目:初中数学 来源: 题型:
【题目】如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m时,桥洞与水面
的最大距离是5m.
(1)经过讨论,同学们得出三种建立平面直角坐标系的方案(如下图)
你选择的方案是_____(填方案一,方案二,或方案三),则B点坐标是______,求出你所选方案中的抛物线的表达式;
(2)因为上游水库泄洪,水面宽度变为6m,求水面上涨的高度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法正确的个数有( )
①垂线段最短;
②一对内错角的角平分线互相平行;
③平面内的n条直线最多有个交点;
④若,则;
⑤平行于同一直线的两条直线互相平行,垂直于同一直线的两条直线也互相平行.
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平行四边形ABCD中,是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连结CE,DF,下列说法不正确的是
A. 四边形CEDF是平行四边形
B. 当时,四边形CEDF是矩形
C. 当时,四边形CEDF是菱形
D. 当时,四边形CEDF是菱形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF.
(1)求证:AD平分∠BAC;
(2)直接写出AB+AC与AE之间的等量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两地之间的高速公路全长200千米,比原来国道的长度减少了20千米.高速公路通车后,某长途汽车的行驶速度提高了45千米/时,从甲地到乙地的行驶时间缩短了一半,求长途汽车在原来国道上行驶的速度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD和正方形EFGH的中心重合,,,分别延长FE,GF,HG和EH交AB,BC,CD,AD于点I,J,K,若,则AI的长为______,四边形AIEL的面积为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】先阅读理解下面的例题,再按要求解答下列问题:
例题:解一元二次不等式,
解:∵,∴可化为,
由有理数的乘法法则“两数相乘,同号得正”,有
(1)或(2)
解不等式组(1),得,解不等式组(2),得,
故的解集为或,
即一元二次不等式的解集为或.
问题:(1)一元二次不等式的解集为______.
(2)求分式不等式的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是( )
A. B. 2- C. 2- D. 4-
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com