【题目】综合题
(1)如图1,AC和BD相交于点O,OA=OC,OB=OD,求证:DC∥AB.
(2)如图2,在⊙O中,直径AB=6,AB与弦CD相交于点E,连接AC、BD,若AC=2,求cosD的值.
【答案】
(1)证明:在△AOB和△COD中,
,
∴△AOB≌△COD,
∴∠A=∠ACD,
∴DC∥AB
(2)解:连接BC,
∵AB为直径,
∴∠ACB=90°,
∴cosA= = ,
由圆周角定理得,∠D=∠A,
∴cosD= .
【解析】(1)根据全等三角形的判定方法(SAS)得到△AOB≌△COD,再根据全等三角形对应角相等,得到内错角∠A=∠ACD,根据内错角相等两直线平行,得出结论.(2)根据直径所对的圆周角是直角得到直角三角形,再根据圆周角定理得到∠D=∠A,得到cosA=cosD.
【考点精析】本题主要考查了垂径定理和解直角三角形的相关知识点,需要掌握垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;解直角三角形的依据:①边的关系a2+b2=c2;②角的关系:A+B=90°;③边角关系:三角函数的定义.(注意:尽量避免使用中间数据和除法)才能正确解答此题.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A在第一象限,点B(a,0),点C(0,b)分别在x轴,y轴上,其中a,b是二元一次方程的解,且a为不等式的最大整数解.
(1)证明:OB=OC;
(2)如图1,连接AB,过点A作AD⊥AB交y轴于点D,在射线AD上截取AE=AB,连接CE,取CE的中点F,连接AF并延长至点G,使FG=AF,连接CG,OA.当点A在第一象限内运动(AD不经过点C)时,证明:∠OAF的大小不变;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AD是⊙O的切线,切点为A,AB是⊙O的弦.过点B作BC∥AD,交⊙O于点C,连接AC,过点C作CD∥AB,交AD于点D.连接AO并延长交BC于点M,交过点C的直线于点P,且∠BCP=∠ACD.
(1)判断直线PC与⊙O的位置关系,并说明理由;
(2)若AB=9,BC=6.求PC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且∠GDF=∠ADF.
(1)求证:△ADE≌△BFE;
(2)连接EG,判断EG与DF的位置关系并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知正方形ABCD的边长为10厘米,点E在边AB上,且AE=4厘米,如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.设运动时间为t秒.
(1)若点Q的运动速度与点P的运动速度相等,经过2秒后,△BPE与△CQP是否全等?请说明理由;
(2)若点Q的运动速度与点P的运动速度不相等,则当t为何值时,能够使△BPE与△CQP全等;此时点Q的运动速度为多少.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有一组平行线过点A作AM⊥于点M,作∠MAN=60°,且AN=AM,过点N作CN⊥AN交直线于点C,在直线上取点B使BM=CN,若直线与间的距离为2,与间的距离为4,则BC=______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠BAC=90°,点D是BC上一点,将△ABD沿AD翻折后得到△AED,边AE交射线BC于点F.(友情提醒:翻折前后的两个三角形的对应边相等,对应角相等.)
(1)如图①,当AE⊥BC时,求证:DE∥AC.
(2)若,∠BAD=x° .
①如图②,当DE⊥BC时,求x的值;
②是否存在这样的x的值,使得△DEF中有两个角相等.若存在,并求x的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】点P是正方形ABCD边AB上一点(不与A、B重合),连接PD并将线段PD绕点P顺时针旋转90°,得线段PE,连接BE,则∠CBE等于( )
A. 75°B. 60°C. 30°D. 45°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=﹣ x+m(m>0)的图象与x轴、y轴分别交于点A,B,点C在线段OA上,点C的横坐标为n,点D在线段AB上,且AD=2BD,将△ACD绕点D旋转180°后得到△A1C1D.
(1)若点C1恰好落在y轴上,试求 的值;
(2)当n=4时,若△A1C1D被y轴分得两部分图形的面积比为3:5,求该一次函数的解析式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com