精英家教网 > 初中数学 > 题目详情

【题目】P是正方形ABCDAB上一点(不与AB重合),连接PD并将线段PD绕点P顺时针旋转90°,得线段PE,连接BE,则∠CBE等于(

A. 75°B. 60°C. 30°D. 45°

【答案】D

【解析】

EAB的延长线AF的垂线,垂足为F,可得出∠F为直角,又四边形ABCD为正方形,可得出∠A为直角,进而得到一对角相等,由旋转可得∠DPE为直角,根据平角的定义得到一对角互余,在直角三角形ADP中,根据两锐角互余得到一对角互余,根据等角的余角相等可得出一对角相等,再由PD=PE,利用AAS可得出三角形ADP与三角形PEF全等,根据确定三角形的对应边相等可得出AD=PFAP=EF,再由正方形的边长相等得到AD=AB,由AP+PB=PB+BF,得到AP=BF,等量代换可得出EF=BF,即三角形BEF为等腰直角三角形,可得出∠EBF45°,再由∠CBF为直角,即可求出∠CBE的度数.

过点EEFAF,交AB的延长线于点F,则∠F=90°

∵四边形ABCD为正方形,

AD=AB,∠A=ABC=90°

∴∠ADP+APD=90°

由旋转可得:PD=PE,∠DPE=90°

∴∠APD+EPF=90°

∴∠ADP=EPF

APDFEP中,

∴△APD≌△FEPAAS),

AP=EFAD=PF

又∵AD=AB

PF=AB,即AP+PB=PB+BF

AP=BF

BF=EF,又∠F=90°

∴△BEF为等腰直角三角形,

∴∠EBF=45°,又∠CBF=90°

则∠CBE=45°

故选D

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,ABC的三个顶点的位置如图所示.现将ABC平移,使得点A移至图中的点A'的位置.

1)平移后所得ABC的顶点B的坐标为 C的坐标为

2)平移过程中ABC扫过的面积为

3)将直线AB以每秒1个单位长度的速度向右平移,则平移 秒时该直线恰好经过点C

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合题
(1)如图1,AC和BD相交于点O,OA=OC,OB=OD,求证:DC∥AB.

(2)如图2,在⊙O中,直径AB=6,AB与弦CD相交于点E,连接AC、BD,若AC=2,求cosD的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,P1、P2(P2在P1的右侧)是y= (k>0)在第一象限上的两点,点A1的坐标为(2,0).

(1)填空:当点P1的横坐标逐渐增大时,△P1OA1的面积将(减小、不变、增大)
(2)若△P1OA1与△P2A1A2均为等边三角形,
①求反比例函数的解析式;
②求出点P2的坐标,并根据图象直接写在第一象限内,当x满足什么条件时,经过点P1、P2的一次函数的函数值大于反比例函数y= 的函数值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)拼一拼,画一画:请你用4个长为a,宽为b的矩形拼成一个大正方形,并且正中间留下一个洞,这个洞恰好是一个小正方形。

2)用不同方法计算中间的小正方形的面积,聪明的你能发现什么?

3)当拼成的这个大正方形边长比中间小正方形边长多3cm时,它的面积就多24cm2,求中间小正方形的边长。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,在平面直角坐标系中,点A(4,0),点B(m, m),点C为线段OA上一点(点O为原点),则AB+BC的最小值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,点PAB的中点,的延长线于点E,连接AE,过点ADP于点F,连接BF下列结论中:是等边三角形;其中正确的是  

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】类比学习:

一动点沿着数轴向右平移个单位,再向左平移个单位,相当于向右平移个单位.用有理数加法表示为.若坐标平面上的点做如下平移:沿轴方向平移的数量为(向右为正,向左为负,平移个单位),沿轴方向平移的数量为(向上为正,向下为负,平移个单位),则把有序数对叫做这一平移的“平移量”;“平移量”与“平移量”的加法运算法则为

解决问题:

1)计算:

2)动点从坐标原点出发,先按照“平移量”平移到,再按照“平移量”平移到:若先把动点按照.“平移量”平移到,再按照“平移量”平移,最后的位置还是吗?在图1中画出四边形

3)如图2,一艘船从码头出发,先航行到湖心岛码头,再从码头航行到码头,最后回到出发点.请用“平移量”加法算式表示它的航行过程.

解:(1______

2)答:______

3)加法算式:______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在菱形ABCD中,对角线ACBD相交于点ODE∥ACAE∥BD

(1)、求证:四边形AODE是矩形;(2)、若AB6∠BCD120°,求四边形AODE的面积.

查看答案和解析>>

同步练习册答案