【题目】已知,在平面直角坐标系中,点A(4,0),点B(m, m),点C为线段OA上一点(点O为原点),则AB+BC的最小值为 .
科目:初中数学 来源: 题型:
【题目】如图,已知∠ABC=63°,∠ECB=117°.
(1) AB与ED平行吗?为什么?
(2)若∠P=∠Q,则∠1与∠2是否相等?说说你的理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有一组平行线过点A作AM⊥于点M,作∠MAN=60°,且AN=AM,过点N作CN⊥AN交直线于点C,在直线上取点B使BM=CN,若直线与间的距离为2,与间的距离为4,则BC=______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)计算:0×1×2×3+1=(_______)2;
1×2×3×4+1=(______)2;
2×3×4×5+1=(_______)2;
3×4×5×6+1=(_______)2;
……
(2)根据以上规律填空:4×5×6×7+1=(_____)2;
____×___×_____×_____+1=(55)2.
(3)小明说:“任意四个连续自然数的积与1的和都是某个奇数的平方”.你认为他的说法正确吗?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】点P是正方形ABCD边AB上一点(不与A、B重合),连接PD并将线段PD绕点P顺时针旋转90°,得线段PE,连接BE,则∠CBE等于( )
A. 75°B. 60°C. 30°D. 45°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰梯形ABCD中,AB∥DC,AD=BC=5cm,AB=12cm,CD=6Cm,点P从A开始沿AB边向B以每秒3cm的速度移动,点Q从C开始沿CD边向D以每秒1cm的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达终点时,运动停止,设运动时间为秒.
(1)求证:当时,四边形APQD是平行四边形;
(2)PQ是否可能平分对角线BD?若能,求出当为何值时PQ平分BD;若不能,请说明理由;
(3)当PD=PQ时,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为迎接体育中考,了解学生的体育情况,学校随机调查了本校九年级50名学生“30秒跳绳”的次数,并将调查所得的数据整理如下:
30秒跳绳次数的频数、频率分布表
成绩段 | 频数 | 频率 |
0≤x<20 | 5 | 0.1 |
20≤x<40 | 10 | a |
40≤x<60 | b | 0.14 |
60≤x<80 | m | c |
80≤x<100 | 12 | n |
根据以上图表信息,解答下列问题:
(1)表中的a= , m=;
(2)请把频数分布直方图补充完整;(画图后请标注相应的数据)
(3)若该校九年级共有600名学生,请你估计“30秒跳绳”的次数60次以上(含60次)的学生有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=3cm,BC=6cm.点P从点D出发向点A运动,运动到点A即停止;同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q的速度都是1cm/s.连接PQ、AQ、CP.设点P、Q运动的时间为ts.
当t为何值时,四边形ABQP是矩形;
当t为何值时,四边形AQCP是菱形;
分别求出(2)中菱形AQCP的周长和面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平面直角坐标系中,矩形OABC的对角线AC=12,∠ACO=30°
(1)求B、C两点的坐标;
(2)过点G()作GF⊥AC,垂足为F,直线GF分别交AB、OC于点E、D,求直线DE的解析式;
(3)在⑵的条件下,若点M在直线DE上,平面内是否存在点P,使以O、F、M、P为顶点的四边形是菱形?若存在,请直接写出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com