【题目】如图,P1、P2(P2在P1的右侧)是y= (k>0)在第一象限上的两点,点A1的坐标为(2,0).
(1)填空:当点P1的横坐标逐渐增大时,△P1OA1的面积将(减小、不变、增大)
(2)若△P1OA1与△P2A1A2均为等边三角形,
①求反比例函数的解析式;
②求出点P2的坐标,并根据图象直接写在第一象限内,当x满足什么条件时,经过点P1、P2的一次函数的函数值大于反比例函数y= 的函数值.
【答案】
(1)减小
(2)解:①如图所示,作P1B⊥OA1于点B,
∵A1的坐标为(2,0),
∴OA1=2,
∵△P1OA1是等边三角形,
∴∠P1OA1=60°,
又∵P1B⊥OA1,
∴OB=BA1=1,
∴P1B= ,
∴P1的坐标为(1, ),
代入反比例函数解析式可得k= ,
∴反比例函数的解析式为y= ;
②如图所示,过P2作P2C⊥A1A2于点C,
∵△P2A1A2为等边三角形,
∴∠P2A1A2=60°,
设A1C=x,则P2C= x,
∴点P2的坐标为(2+x, x),
代入反比例函数解析式可得(2+x) x= ,
解得x1= ﹣1,x2=﹣ ﹣1(舍去),
∴OC=2+ ﹣1= +1,P2C= ( ﹣1)= ﹣ ,
∴点P2的坐标为( +1, ﹣ ),
∴当1<x< +1时,经过点P1、P2的一次函数的函数值大于反比例函数y= 的函数值
【解析】解:(1)当点P1的横坐标逐渐增大时,点P1离x轴的距离变小,而OA1的长度不变,
故△P1OA1的面积将减小,
所以答案是:减小;
科目:初中数学 来源: 题型:
【题目】已知:如图,在正方形ABCD外取一点E,连接AE,BE,DE,过点A作AE的垂线交DE于点P.若AE=AP=1,PB=.下列结论:①△APD≌△AEB;②点B到直线AE的距离为;③EB⊥ED;④S△APD+S△APB=1+.其中正确结论的序号是( )
A. ①②③ B. ①②④ C. ②③④ D. ①③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且∠GDF=∠ADF.
(1)求证:△ADE≌△BFE;
(2)连接EG,判断EG与DF的位置关系并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有一组平行线过点A作AM⊥于点M,作∠MAN=60°,且AN=AM,过点N作CN⊥AN交直线于点C,在直线上取点B使BM=CN,若直线与间的距离为2,与间的距离为4,则BC=______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠BAC=90°,点D是BC上一点,将△ABD沿AD翻折后得到△AED,边AE交射线BC于点F.(友情提醒:翻折前后的两个三角形的对应边相等,对应角相等.)
(1)如图①,当AE⊥BC时,求证:DE∥AC.
(2)若,∠BAD=x° .
①如图②,当DE⊥BC时,求x的值;
②是否存在这样的x的值,使得△DEF中有两个角相等.若存在,并求x的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)计算:0×1×2×3+1=(_______)2;
1×2×3×4+1=(______)2;
2×3×4×5+1=(_______)2;
3×4×5×6+1=(_______)2;
……
(2)根据以上规律填空:4×5×6×7+1=(_____)2;
____×___×_____×_____+1=(55)2.
(3)小明说:“任意四个连续自然数的积与1的和都是某个奇数的平方”.你认为他的说法正确吗?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】点P是正方形ABCD边AB上一点(不与A、B重合),连接PD并将线段PD绕点P顺时针旋转90°,得线段PE,连接BE,则∠CBE等于( )
A. 75°B. 60°C. 30°D. 45°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为迎接体育中考,了解学生的体育情况,学校随机调查了本校九年级50名学生“30秒跳绳”的次数,并将调查所得的数据整理如下:
30秒跳绳次数的频数、频率分布表
成绩段 | 频数 | 频率 |
0≤x<20 | 5 | 0.1 |
20≤x<40 | 10 | a |
40≤x<60 | b | 0.14 |
60≤x<80 | m | c |
80≤x<100 | 12 | n |
根据以上图表信息,解答下列问题:
(1)表中的a= , m=;
(2)请把频数分布直方图补充完整;(画图后请标注相应的数据)
(3)若该校九年级共有600名学生,请你估计“30秒跳绳”的次数60次以上(含60次)的学生有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,四边形 OABC 的顶点 A、C 分别在 x 轴和 y 轴上,顶点B 在第一象限,OA//CB.
(1)如图 1,若点 A(6,0),B(4,3),点 M 是 y 轴上一点,且 SBCM SAOM ,求点 M的坐标;
(2)如图 2,点 P 是 x 轴上点 A 左边的一点,连接 PB,∠PBC 和∠PAB 的角平分线交于点D,求证:∠ABP+2∠ADB=180°;
(3)如图 3,点 P 是 x 轴上点 A 左边的一点,点 Q 是射线 BC 上一点,连接 PB、PQ,∠ABP和∠BQP 的平分线相交于点 E,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com