精英家教网 > 初中数学 > 题目详情

【题目】如图,P1、P2(P2在P1的右侧)是y= (k>0)在第一象限上的两点,点A1的坐标为(2,0).

(1)填空:当点P1的横坐标逐渐增大时,△P1OA1的面积将(减小、不变、增大)
(2)若△P1OA1与△P2A1A2均为等边三角形,
①求反比例函数的解析式;
②求出点P2的坐标,并根据图象直接写在第一象限内,当x满足什么条件时,经过点P1、P2的一次函数的函数值大于反比例函数y= 的函数值.

【答案】
(1)减小
(2)解:①如图所示,作P1B⊥OA1于点B,

∵A1的坐标为(2,0),

∴OA1=2,

∵△P1OA1是等边三角形,

∴∠P1OA1=60°,

又∵P1B⊥OA1

∴OB=BA1=1,

∴P1B=

∴P1的坐标为(1, ),

代入反比例函数解析式可得k=

∴反比例函数的解析式为y=

②如图所示,过P2作P2C⊥A1A2于点C,

∵△P2A1A2为等边三角形,

∴∠P2A1A2=60°,

设A1C=x,则P2C= x,

∴点P2的坐标为(2+x, x),

代入反比例函数解析式可得(2+x) x=

解得x1= ﹣1,x2=﹣ ﹣1(舍去),

∴OC=2+ ﹣1= +1,P2C= ﹣1)=

∴点P2的坐标为( +1, ),

∴当1<x< +1时,经过点P1、P2的一次函数的函数值大于反比例函数y= 的函数值


【解析】解:(1)当点P1的横坐标逐渐增大时,点P1离x轴的距离变小,而OA1的长度不变,

故△P1OA1的面积将减小,

所以答案是:减小;

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:如图,在正方形ABCD外取一点E,连接AE,BE,DE,过点AAE的垂线交DE于点P.若AE=AP=1,PB=.下列结论:①△APD≌△AEB;②点B到直线AE的距离为EBED;SAPD+SAPB=1+.其中正确结论的序号是(  )

A. ①②③ B. ①②④ C. ②③④ D. ①③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,ADBC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且GDF=ADF

1求证:ADE≌△BFE;

2连接EG,判断EG与DF的位置关系并说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有一组平行线过点AAM于点M,作∠MAN=60°,AN=AM,过点NCNAN交直线于点C,在直线上取点B使BM=CN,若直线间的距离为2,间的距离为4,BC=______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,∠BAC90°,点DBC上一点,将ABD沿AD翻折后得到AED,边AE交射线BC于点F.(友情提醒:翻折前后的两个三角形的对应边相等,对应角相等.)

 

1)如图①,当AEBC时,求证:DEAC

2)若,∠BAD

①如图②,当DEBC时,求x的值;

②是否存在这样的x的值,使得DEF中有两个角相等.若存在,并求x的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)计算:0×1×2×3+1=(_______2

1×2×3×4+1=(______2

2×3×4×5+1=(_______2

3×4×5×6+1=(_______2

……

2)根据以上规律填空:4×5×6×7+1=(_____2

____×___×_____×_____+1=(552

3)小明说:任意四个连续自然数的积与1的和都是某个奇数的平方.你认为他的说法正确吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】P是正方形ABCDAB上一点(不与AB重合),连接PD并将线段PD绕点P顺时针旋转90°,得线段PE,连接BE,则∠CBE等于(

A. 75°B. 60°C. 30°D. 45°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为迎接体育中考,了解学生的体育情况,学校随机调查了本校九年级50名学生“30秒跳绳”的次数,并将调查所得的数据整理如下:
30秒跳绳次数的频数、频率分布表

成绩段

频数

频率

0≤x<20

5

0.1

20≤x<40

10

a

40≤x<60

b

0.14

60≤x<80

m

c

80≤x<100

12

n

根据以上图表信息,解答下列问题:

(1)表中的a= , m=
(2)请把频数分布直方图补充完整;(画图后请标注相应的数据)
(3)若该校九年级共有600名学生,请你估计“30秒跳绳”的次数60次以上(含60次)的学生有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,四边形 OABC 的顶点 AC 分别在 x 轴和 y 轴上,顶点B 在第一象限,OA//CB

1)如图 1,若点 A(60)B(43),点 M y 轴上一点,且 SBCM SAOM ,求点 M的坐标;

2)如图 2,点 P x 轴上点 A 左边的一点,连接 PB,∠PBC 和∠PAB 的角平分线交于点D,求证:∠ABP+2ADB=180°

3)如图 3,点 P x 轴上点 A 左边的一点,点 Q 是射线 BC 上一点,连接 PBPQ,∠ABP和∠BQP 的平分线相交于点 E,求的值.

查看答案和解析>>

同步练习册答案