精英家教网 > 初中数学 > 题目详情
18.在数轴上,点A,B分别表示数1,x,且点A,B的距离为$\sqrt{5}$,那么x=1-$\sqrt{5}$或1+$\sqrt{5}$.

分析 直接利用数轴上点的位置得出1-x=$\sqrt{5}$或x-1=$\sqrt{5}$,进而得出答案.

解答 解:∵在数轴上,点A,B分别表示数1,x,且点A,B的距离为$\sqrt{5}$,
∴1-x=$\sqrt{5}$或x-1=$\sqrt{5}$,
解得:x=1-$\sqrt{5}$或1+$\sqrt{5}$.
故答案为:1-$\sqrt{5}$或1+$\sqrt{5}$.

点评 此题主要考查了实数与数轴,正确利用分类讨论得出x的值是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

8.已知方程组$\left\{\begin{array}{l}{2x+y=5m+6}\\{x-2y=-17}\end{array}\right.$的解为非负数,化简$\sqrt{1-4m+4{m}^{2}}$=2m-1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.某专营商场销售一种品牌电脑,每台电脑的进货价是0.4万元.图中的直线l1表示该品牌电脑一天的销售收入y1(万元)与销售量x(台)的关系,已知商场每天的房租、水电、工资等固定支出为3万元.
(1)直线l1对应的函数表达式是y=0.8x,每台电脑的销售价是0.8万元;
(2)写出商场一天的总成本y2(万元)与销售量x(台)之间的函数表达式:y2=0.4x+3;
(3)在图的直角坐标系中画出第(2)小题的图象(标上l2);
(4)通过计算说明:每天销售量达到多少台时,商场可以盈利.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴和y轴的正半轴上,顶点B的坐标为(2m,m),沿着OB翻折△OAB,设翻折后的点A的应对点为点D,OD与BC交于点E,点M在y轴上,直线ME与x轴相交于点F,且∠EMC与∠MOB互余,经过点A,C,D的抛物线的解析式为y=ax2+bx+c.
(1)求点E的坐标(用含m的式子表示);
(2)若点M的坐标为(0,5),求该抛物线的解析式;
(3)在(2)的条件下,设线段CB下方的抛物线上是否存在点P,使△CEP与△BDE的面积比为3:5?若存在,直接写出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,二次函数y=x2+2x+c的图象与x轴交于点A和点B(1,0),以AB为边在x轴上方作正方形ABCD,动点P从点A出发,以每秒2个单位长度的速度沿x轴的正方向匀速运动,同时动点Q从点C出发,以每秒1个单位长度的速度沿CB匀速运动,当点Q到达终点B时,点P停止运动,设运动时间为t秒.连接DP,过点P作DP的垂线与y轴交于点E.
(1)求二次函数的解析式及点A的坐标;
(2)当点P在线段AO(点P不与A、O重合)上运动至何处时,线段OE的长有最大值,并求出这个最大值;
(3)在P,Q运动过程中,求当△DPE与以D,C,Q为顶点的三角形相似时t的值;
(4)是否存在t,使△DCQ沿DQ翻折得到△DC′Q,点C′恰好落在抛物线的对称轴上?若存在,请求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,在△ABC中,∠BAC=90°,E是AC的中点,AB是⊙O的直径,⊙O交BC于点D,BE交⊙O于点F,连接AF,AF的延长线交DE于点P.
(1)求证:DE是⊙O的切线;
(2)若∠ABC=60°,求cos∠ABE的值;
(3)求证:BF•BE=BC•BD.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.若$\frac{3}{1-x}+\frac{2}{x+1}=\frac{a}{{x}^{2}-1}$有增根,且a为任意实数,则这个方程的增根是x=±1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.数轴上距离表示数-1的点$\sqrt{3}$个单位长度的点表示的数是$-1-\sqrt{3}$或$-1+\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.有5个边长为1的正方形,排列成形式如图1-1的矩形将该矩形以图1-2的方式分割后拼接成正方形,并在正方形网格中,以格点为顶点画出该正方形ABCD
(1)正方形ABCD的边长为$\sqrt{5}$;
(2)现有10个边长为1的正方形排列成形式如图2-1的矩形将矩形重新分割后拼接成正方形EFGH,请你在图2-2中画出分割的方法,并在图2-3的正方形网格中,以格点为顶点画出该正方形EFGH;
(3)如图3,从正方形AMGN中裁去(1)中的正方形ABCD和(2)中的正方形EFGH,求留下部分的面积.

查看答案和解析>>

同步练习册答案