精英家教网 > 初中数学 > 题目详情

【题目】如图,在直角梯形中,,点边上一点,且,则的面积为________

【答案】

【解析】

过点AAFCDF,则四边形ABCF是正方形,延长CBG,使BG=DF,先证得AGBADF,得出AG=AD,GAE=GAE=45°,然后再证得ADEAGE,得出EG=ED=5,最后根据全等三角形的面积相等即可求得答案.

过点AAFCDF,延长CBG,使BG=DF,则∠ABG=90°,

∵∠ABC=C=F=90°,∴四边形ABCF是矩形,

AB=BC,

∴矩形ABCF是正方形,

∴∠BAF=90°,AB=AF,

AGBADF中,

AGBADF(SAS),

AG=AD,GAB=DAF,

∴∠GAD=90°,

∵∠EAD=45°,

∴∠GAE=45°,

AGEADE中,

AGEADE(SAS),

EG=ED=5,

SADE=SAGE==15,

故答案为:15.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】综合与实践:

如图1,已知△ABC为等边三角形,点D,E分别在边AB、AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.

(1)观察猜想在图1中,线段PMPN的数量关系是   MPN的度数是   

(2)探究证明把△ADE绕点A逆时针方向旋转到图2的位置,

①判断△PMN的形状,并说明理由;

②求∠MPN的度数;

(3)拓展延伸若△ABC为直角三角形,∠BAC=90°,AB=AC=10,点DE分别在边AB,AC上,AD=AE=4,连接DC,点M,P,N分别为DE,DC,BC的中点.把△ADE绕点A在平面内自由旋转,如图3,请直接写出△PMN面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,E、F是对角线BD上两点,且∠EAF=45°,将ADF绕点A顺时针旋转90°后,得到ABQ,连接EQ,求证:

(1)EA是∠QED的平分线;

(2)EF2=BE2+DF2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形网格中,每个小方格的边长都为1,△各顶点都在格点上.若点的坐标为(03),请按要求解答下列问题:

1)在图中建立符合条件的平面直角坐标系;

2)根据所建立的坐标系,写出点和点的坐标;

3)画出△关于轴的对称图形△

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】矩形的对角线相交于点

四边形是什么特殊四边形?证明你的结论.

,求四边形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,半径为中,弦所对的圆心角分别是,若,则弦的长等于( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两人相约元旦登山,甲、乙两人距地面的高度y(m)与登山时间x(min)之间的函数图像如图所示,根据图像所提供的信息解答下列问题:

1t= min.

2)若乙提速后,乙登山的上升速度是甲登山的上升速度3倍,

则甲登山的的上升速度是 m/min

请求出甲登山过程中,距地面的高度y(m)与登山时间x(min)之间的函数关系式.

当甲、乙两人距地面高度差为70m时,求x的值(直接写出满足条件的x值).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,RtABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.

(1)若BPQABC相似,求t的值;

(2)连接AQ、CP,若AQCP,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,大楼(可以看作不透明的长方体)的四周都是空旷的水平地面.地面上有甲、乙两人,他们现在分别位于点和点处,均在的中垂线上,且到大楼的距离分别为米和米,又已知米,米,由于大楼遮挡着,所以乙不能看到甲.若乙沿着大楼的外面地带行走,直到看到甲(甲保持不动),则他行走的最短距离长为________米.

查看答案和解析>>

同步练习册答案