【题目】如图,在直角梯形中,,点为边上一点,且,,则的面积为________.
【答案】
【解析】
过点A作AF⊥CD于F,则四边形ABCF是正方形,延长CB到G,使BG=DF,先证得△AGB≌△ADF,得出AG=AD,∠GAE=∠GAE=45°,然后再证得△ADE≌△AGE,得出EG=ED=5,最后根据全等三角形的面积相等即可求得答案.
过点A作AF⊥CD于F,延长CB到G,使BG=DF,则∠ABG=90°,
∵∠ABC=∠C=∠F=90°,∴四边形ABCF是矩形,
∵AB=BC,
∴矩形ABCF是正方形,
∴∠BAF=90°,AB=AF,
在△AGB和△ADF中,
,
∴△AGB≌△ADF(SAS),
∴AG=AD,∠GAB=∠DAF,
∴∠GAD=90°,
∵∠EAD=45°,
∴∠GAE=45°,
在△AGE和△ADE中,
,
∴△AGE≌△ADE(SAS),
∴EG=ED=5,
∴S△ADE=S△AGE==15,
故答案为:15.
科目:初中数学 来源: 题型:
【题目】综合与实践:
如图1,已知△ABC为等边三角形,点D,E分别在边AB、AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.
(1)观察猜想:在图1中,线段PM与PN的数量关系是 ,∠MPN的度数是 ;
(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,
①判断△PMN的形状,并说明理由;
②求∠MPN的度数;
(3)拓展延伸:若△ABC为直角三角形,∠BAC=90°,AB=AC=10,点DE分别在边AB,AC上,AD=AE=4,连接DC,点M,P,N分别为DE,DC,BC的中点.把△ADE绕点A在平面内自由旋转,如图3,请直接写出△PMN面积的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,E、F是对角线BD上两点,且∠EAF=45°,将△ADF绕点A顺时针旋转90°后,得到△ABQ,连接EQ,求证:
(1)EA是∠QED的平分线;
(2)EF2=BE2+DF2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形网格中,每个小方格的边长都为1,△各顶点都在格点上.若点的坐标为(0,3),请按要求解答下列问题:
(1)在图中建立符合条件的平面直角坐标系;
(2)根据所建立的坐标系,写出点和点的坐标;
(3)画出△关于轴的对称图形△.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两人相约元旦登山,甲、乙两人距地面的高度y(m)与登山时间x(min)之间的函数图像如图所示,根据图像所提供的信息解答下列问题:
(1)t= min.
(2)若乙提速后,乙登山的上升速度是甲登山的上升速度3倍,
①则甲登山的的上升速度是 m/min;
②请求出甲登山过程中,距地面的高度y(m)与登山时间x(min)之间的函数关系式.
③当甲、乙两人距地面高度差为70m时,求x的值(直接写出满足条件的x值).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.
(1)若△BPQ与△ABC相似,求t的值;
(2)连接AQ、CP,若AQ⊥CP,求t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,大楼(可以看作不透明的长方体)的四周都是空旷的水平地面.地面上有甲、乙两人,他们现在分别位于点和点处,、均在的中垂线上,且、到大楼的距离分别为米和米,又已知长米,长米,由于大楼遮挡着,所以乙不能看到甲.若乙沿着大楼的外面地带行走,直到看到甲(甲保持不动),则他行走的最短距离长为________米.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com