【题目】如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.
(1)若△BPQ与△ABC相似,求t的值;
(2)连接AQ、CP,若AQ⊥CP,求t的值.
【答案】(1)当t=1或t=时,△BPQ与△ABC相似;(2)t=.
【解析】
试题(1)分两种情况:①当△BPQ∽△BAC时,BP:BA=BQ:BC;当△BPQ∽△BCA时,BP:BC=BQ:BA,再根据BP=5t,QC=4t,AB=10cm,BC=8cm,代入计算即可;
(2)过P作PM⊥BC于点M,AQ,CP交于点N,则有PB=5t,PM=3t,MC=8-4t,根据△ACQ∽△CMP,得出AC:CM=CQ:MP,代入计算即可.
试题解析:根据勾股定理得:BA==10;
(1)分两种情况讨论:
①当△BPQ∽△BAC时,
∵BP=5t,QC=4t,AB=10,BC=8,
∴,解得,t=1,
②当△BPQ∽△BCA时,
∴,解得,t=;
∴t=1或时,△BPQ∽△BCA;
(2)过P作PM⊥BC于点M,AQ,CP交于点N,如图所示:
则PB=5t,PM=3t,MC=8-4t,
∵∠NAC+∠NCA=90°,∠PCM+∠NCA=90°,
∴∠NAC=∠PCM,
∵∠ACQ=∠PMC,
∴△ACQ∽△CMP,
∴
∴,解得t=.
科目:初中数学 来源: 题型:
【题目】如图1,△ABC中,CD⊥AB于D,且BD=4,AD=6,CD=8.
(1)求证:∠ACB=∠ABC;
(2)如图2,E为AC的中点,连结DE.动点M从点B出发以每秒1cm的速度沿线段BA向点A 运动,同时动点N从点A出发以相同速度沿线段AC向点C运动,当其中一点到达终点时另一个点也停止运动.设点M运动的时间为t(秒),
①若MN与BC平行,求t的值;
②问在点M运动的过程中,△MDE能否成为等腰三角形?若能,求出t的值;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们定义:如图1,在△ABC看,把AB点A顺时针旋转α(0°<α<180°)得到AB',把AC绕点A逆时针旋转β得到AC',连接B'C'.当α+β=180°时,我们称△A'B'C'是△ABC的“旋补三角形”,△AB'C'边B'C'上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.
特例感知:
(1)在图2,图3中,△AB'C'是△ABC的“旋补三角形”,AD是△ABC的“旋补中线”.
①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD= BC;
②如图3,当∠BAC=90°,BC=8时,则AD长为 .
猜想论证:
(2)在图1中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.
(1)求证:四边形EFDG是菱形;
(2)连接DE,交AF与O点,试探究线段EG、GF、AF之间的数量关系,并说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在四边形ABCD中,∠BAD+∠BCD=180°, AC平分∠BAD,过点C作CE⊥AD,垂足为E, CD=4,AE=10,则四边形ABCD的周长是____________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,A(a,0),B(b,0),C(-1,2),且+(a+2b-4)2=0.
(1)求a,b的值.
(2)在y轴的正半轴上存在一点M,使S△COM=S△ABC,求出点M的坐标.
(3)在坐标轴的其他位置是否有在点M,使S△COM=S△ABC仍成立?若存在,请直 接写出符合条件的点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,∠ABC,射线BC上一点D.
(1)求作:等腰△PBD,使线段BD为等腰△PBD的底边,点P在∠ABC内部,且点P到∠ABC两边的距离相等.
(2)在(1)的条件下,若DP⊥AB,求∠ABC的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,反比例函数y=(k≠0)经过ABCD的顶点B、D,点A的坐标为(0,﹣1),AB∥x轴,CD经过点(0,2),ABCD的面积是18,则点D的坐标是( )
A. (﹣2,2) B. (3,2) C. (﹣3,2) D. (﹣6,1)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com