精英家教网 > 初中数学 > 题目详情

【题目】某学校课程安排中,各班每天下午只安排三节课.

(1)初一(1)班星期二下午安排了数学、英语、生物课各一节,通过画树状图求出把数学课安排在最后一节的概率;

(2)星期三下午,初二(1)班安排了数学、物理、政治课各一节,初二(2)班安排了数学、语文、地理课各一节,此时两班这六节课的每一种课表排法出现的概率是.已知这两个班的数学课都由同一个老师担任,其他课由另外四位老师担任.求这两个班数学课不相冲突的概率.

【答案】(1);(2).

【解析】

树状图法,概率。

2)画树状图,然后根据概率公式列式计算即可得解:

画树状图如下:

所有等可能情况共有6×6=36种。

初二(1)班的6种情况,在对应初二(2)班的6种情况时,有2种情况数学课冲突,其余4种情况不冲突。例如,

初二(1)班(数学,物理,政治)对应初二(2)班的6种情况时,与初二(2)班的(数学,语文,地理)和(数学,地理,语文)冲突。

初二(1)班(物理,数学,政治)对应初二(2)班的6种情况时,与初二(2)班的(语文,数学,地理)和(地理,数学,语文)冲突。

不冲突的情况有4×6=24

两个班数学课不相冲突的概率为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,点B为第一象限内一点,点Ax轴正半轴上一点,分别连接OBABAOB为等边三角形,点B的横坐标为4

1)如图1,求线段OA的长;

2)如图2,点M在线段OA上(点M不与点O、点A重合),点N在线段BA的延长线上,连接MBMNBMMN,设OM的长为tBN的长为d,求dt的关系式(不要求写出t的取值范围);

3)在(2)的条件下,点D为第四象限内一点,分别连接ODMDNDMND为等边三角形,线段MA的垂直平分线交OD的延长线于点E,交MA于点H,连接AE,交ND于点F,连接MF,若MFAM+AN,求点E的横坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,动点MA点出发,以的速度沿线段AB向点B运动,动点NB点出发,以的速度沿线段BC向点C运动;点M与点N同时出发,且当M点运动到B点时,M,N两点同时停止运动设点M的运动时间为,连接MN,将沿MN折叠,使点B落在点处,得到,若,则t的值为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC中,∠B=90°AB=16cmBC=12cmPQABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.

1)出发2秒后,求PQ的长.

2)当点Q在边BC上运动时,出发几秒钟后,PQB能形成等腰三角形?

3)当点Q在边CA上运动时,求能使BCQ成为等腰三角形的运动时间.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某书店参加某校读书活动,并为每班准备了AB两套名著,赠予各班甲、乙两名优秀读者,以资鼓励.某班决定采用游戏方式发放,其规则如下:将三张除了数字256不同外其余均相同的扑克牌,数字朝下随机平铺于桌面,从中任取2张,若牌面数字之和为偶数,则甲获A名著;若牌面数字之和为奇数,则乙获得A名著,你认为此规则合理吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在圆⊙O内有折线OABC,其中OA=8,AB=12,A=B=60°,则BC的长为(  )

A. 19 B. 16 C. 18 D. 20

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,Rt△ABC≌Rt△DFE,其中∠ACB=∠DFE=90°,BCEF

(1)若两个三角形按图2方式放置,ACDF交于点O,连接ADBO,则AFCD的数量关系为   BOAD的位置关系为   

(2)若两个三角形按图3方式放置,其中CB(D)、F在一条直线上,连接AEMAE中点,连接FMCM.探究线段FMCM之间的关系,并证明;

(3)若两个三角形按图4方式放置,其中BC(D)、F在一条直线上,点GH分别为FCAC的中点,连接GHBE交于点K,求证:BKEK

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,经过原点O的抛物线(a0)与x轴交于另一点A(,0),在第一象限内与直线y=x交于点B(2,t).

(1)求这条抛物线的表达式;

(2)在第四象限内的抛物线上有一点C,满足以B,O,C为顶点的三角形的面积为2,求点C的坐标;

(3)如图2,若点M在这条抛物线上,且MBO=ABO,在(2)的条件下,是否存在点P,使得POC∽△MOB?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】6分现有5个质地、大小完全相同的小球上分别标有数字﹣1,﹣2,1,2,3先将标有数字﹣2,1,3的小球放在第一个不透明的盒子里,再将其余小球放在第二个不透明的盒子里现分别从两个盒子里各随即取出一个小球

1请利用列表或画树状图的方法表示取出的两个小球上数字之和所有可能的结果;

2求取出的两个小球上的数字之和等于0的概率

查看答案和解析>>

同步练习册答案