精英家教网 > 初中数学 > 题目详情

【题目】如图所示,在圆⊙O内有折线OABC,其中OA=8,AB=12,A=B=60°,则BC的长为(  )

A. 19 B. 16 C. 18 D. 20

【答案】D

【解析】试题分析:延长AOBCD,根据∠A∠B的度数易证得△ABD是等边三角形,由此可求出ODBD的长;过OBC的垂线,设垂足为E;在Rt△ODE中,根据OD的长及∠ODE的度数易求得DE的长,进而可求出BE的长;由垂径定理知BC=2BE,由此得解.

延长AOBCD,作OE⊥BCE

∵∠A=∠B=60°

∴∠ADB=60°

∴△ADB为等边三角形;

∴BD=AD=AB=12

∴OD=4

∵∠ADB=60°

∴DE=OD=2

∴BE=10

∴BC=2BE=20

故选D

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某花圃销售一批名贵花卉,平均每天可售出20盆,每盆盈利40元,为了增加盈利并尽快减少库存,花圃决定采取适当的降价措施,经调查发现,如果每盆花卉每降1元,花圃平均每天可多售出2盆.

1)若花圃平均每天要盈利1200元,每盆花卉应降价多少元?

2)每盆花卉降低多少元时,花圃平均每天盈利最多,是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD相交于点O,且OAD=OCB,延长ADCB交于点P,那么图中的相似三角形的对数为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,CDAB,垂足为D,点EBC上,EFAB,垂足为F.

(1) CDEF平行吗?为什么?

(2)如果∠1=2,且∠3=115°,求∠ACB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)问题发现:如图 1,已知点 FG 分别在直线 ABCD 上,且 ABCD,若∠BFE=40°,∠CGE=130°,则∠GEF 的度数为

2)拓展探究:∠GEF,∠BFE,∠CGE 之间有怎样的数量关系?写出结论并给出证明; 答:∠GEF= .

证明:过点 E EHAB

∴∠FEH=BFE ),

ABCDEHAB,(辅助线的作法)

EHCD ),

∴∠HEG=180°-CGE ),

∴∠FEG=HFG+FEH= .

3)深入探究:如图 2,∠BFE 的平分线 FQ 所在直线与∠CGE 的平分线相交于点 P,试探究∠GPQ 与∠GEF 之间的数量关系,请直接写出你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一次函数y=ax+b的图象经过点A(1,3)且与y=2x-3 平行.

(1)求出a,b.写出y 与x 的函数关系;

(2)求当x=-2 时,y的值,当y=10 时,x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,高ADBE所在的直线交于点H,且BH=AC,则∠ABC等于( )

A. 45° B. 120° C. 45°135° D. 45°120°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察下面三行数:

1)第①行数按什么规律排列?

2)第②③行数与第①行数分别有什么关系;

3)设分别为第①②③行的2012个数,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一段长为250km的高速公路需要维修,现由甲、乙两个工程队先后接力完成,共用时15天,已知甲工程队每天维修20km,乙工程队每天维修15km.求甲、乙两个工程队分别维修了多长的高速公路?(用一元一次方程解决问题)

查看答案和解析>>

同步练习册答案