精英家教网 > 初中数学 > 题目详情

【题目】在太空种子种植体验实践活动中,为了解“宇番2号”番茄,某校科技小组随机调查60株番茄的挂果数量x(单位:个),并绘制如下不完整的统计图表:
“宇番2号”番茄挂果数量统计表

挂果数量x(个)

频数(株)

频率

25≤x<35

6

0.1

35≤x<45

12

0.2

45≤x<55

a

0.25

55≤x<65

18

b

65≤x<75

9

0.15

请结合图表中的信息解答下列问题:

(1)统计表中,a= , b=
(2)将频数分布直方图补充完整;
(3)若绘制“番茄挂果数量扇形统计图”,则挂果数量在“35≤x<45”所对应扇形的圆心角度数为°;
(4)若所种植的“宇番2号”番茄有1000株,则可以估计挂果数量在“55≤x<65”范围的番茄有株.

【答案】
(1)15;0.3
(2)

如图:


(3)72
(4)300
【解析】解:(1)a=60×0.25=15,b= =0.3.故答案是:15,0.3;(2)补全的频数分布直方图如右图所示

(3)由题意可得,挂果数量在“35≤x<45”所对应扇形的圆心角度数为:360°×0.2=72°,所以答案是:72;(4)由题意可得,挂果数量在“55≤x<65”范围的番茄有:1000×0.3=300(株),
所以答案是:300.
【考点精析】认真审题,首先需要了解频数分布直方图(特点:①易于显示各组的频数分布情况;②易于显示各组的频数差别.(注意区分条形统计图与频数分布直方图)),还要掌握扇形统计图(能清楚地表示出各部分在总体中所占的百分比.但是不能清楚地表示出每个项目的具体数目以及事物的变化情况)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于点E,点FAC上,且BD=DF.

(1)求证:CF=EB;

(2)请你判断AE、AFBE之间的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知菱形OABC的顶点O(0,0),B(2,2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为(  )

A.(1,﹣1)
B.(﹣1,﹣1)
C.( ,0)
D.(0,﹣

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,B=C=90 ,M是BC的中点,DM平分ADC.

(1)若连接AM,则AM是否平分BAD?请你证明你的结论;

(2)线段DM与AM有怎样的位置关系?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,AC、BC是⊙O的弦,直径DE⊥AC于点P.若点D在优弧 上,AB=8,BC=3,则DP=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABC中,AC=6cm,BC=8cm,AB=10cm,CDAB边上的高.动点P从点A出发,沿着△ABC的三条边逆时针走一圈回到A点,速度为2cm/s,设运动时间为t s.

(1)求CD的长;

(2)t为何值时,△ACP是等腰三角形?

(3)MBC上一动点,NAB上一动点,是否存在M,N使得AM+MN 的值最小?如果有,请直接写出最小值,如果没有,请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a≠0)和正比例函数y= x的图象如图所示,则方程ax2+(b﹣ )x+c=0(a≠0)的两根之和( )
A.大于0
B.等于0
C.小于0
D.不能确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,H是△ABC的高ADBE的交点,且DH=DC,则下列结论:①BD=AD;②BC=AC;③BH=AC;④CE=CD中正确的有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】正方形OABC的边长为4,对角线相交于点P,抛物线L经过O、P、A三点,点E是正方形内的抛物线上的动点.

(1)建立适当的平面直角坐标系,
①直接写出O、P、A三点坐标;
②求抛物线L的解析式;
(2)求△OAE与△OCE面积之和的最大值.

查看答案和解析>>

同步练习册答案