精英家教网 > 初中数学 > 题目详情
20.如图,已知A1A2=1,∠OA1A2=90°,∠A1OA2=30°,以斜边OA2为直角边作直角三角形,使得∠A2OA3=30°,依次以前一个直角三角形的斜边为直角边一直作含30°角的直角三角形,则Rt△A2014OA2015的面积为$\frac{1}{2}$×($\frac{2}{3}\sqrt{3}$)4026

分析 在直角三角形OA1A2中,利用30°所对的直角边等于斜边的一半,得到OA2=2A1A2,由A1A2的长求出OA2的长,在直角三角形OA2A3中,利用锐角三角函数定义得到tan∠A2OA3等于A2A3与OA2的比值,求出A2A3的长,再利用30°所对的直角边等于斜边的一半,求出OA3的长,同理求出A3A4的长,以此类推得到直角三角形△A2014OA2015的两条直角边的长,求出面积.

解答 解:在Rt△OA1A2中,A1A2=1,∠OA1A2=90°,∠A1OA2=30°,
∴OA1=1÷tan30°=$\sqrt{3}$,OA2=$\sqrt{3}$÷cos30°=2,
在Rt△OA2A3中,OA2=2,∠OA2A3=90°,∠A2OA3=30°,
∴A2A3=OA2tan∠A2OA3=2×$\frac{\sqrt{3}}{3}$=$\frac{2\sqrt{3}}{3}$,OA3=OA2÷cos∠A2OA3=$\frac{4}{3}\sqrt{3}$,
由此可知OA2=OA1×$\frac{2\sqrt{3}}{3}$,OA3=OA1×($\frac{2\sqrt{3}}{3}$)2
则OA2014=OA1×($\frac{2\sqrt{3}}{3}$)2013
则Rt△A2014OA2015的面积为$\frac{1}{2}$×$\sqrt{3}$×($\frac{2}{3}\sqrt{3}$)2013×($\frac{2}{3}\sqrt{3}$)2013=($\frac{2}{3}\sqrt{3}$)4025

点评 此题考查了勾股定理以及含30°角的直角三角形的性质,锐角三角函数定义,属于规律型试题,利用了转化的思想,锻炼了学生归纳总结的能力.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

10.写出以下命题的逆命题,判断逆命题的真假.若为假命题,请举反例;若为真命题,请给予证明.
(1)一次函数y=kx+b,若k>0,b<0,则它的图象不经过第二象限;
(2)等腰三角形底边上的中点到两腰的距离相等.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.将抛物线y=2x2-1向上平移4个单位后,所得抛物线的解析式是y=2x2+3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.解方程组:$\left\{\begin{array}{l}{{x}^{2}-6xy+9{y}^{2}=9}\\{{x}^{2}-{y}^{2}-4x+4y=0}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.如图,直径AB,CD的夹角为60°,P为⊙O上的一个动点(不与点A,B,C,D重合).PM,PN分别垂直于CD,AB,垂足分别为M,N.若⊙O的半径长为2,则MN的长(  )
A.随P点运动而变化,最大值为$\sqrt{3}$B.等于$\sqrt{3}$
C.随P点运动而变化,最小值为$\sqrt{3}$D.随P点运动而变化,没有最值

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.如图中直线l1,l2被l3所截,则同位角有(  )对.
A.1对B.2对C.3对D.4对

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.下列计算正确的是(  )
A.(m+n)2=m2+n2B.m2•m3=m5C.2m+3n=5mnD.5$\sqrt{5}$-2$\sqrt{2}$=3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.已知:如图1,在平面直角坐标系xOy中,直线y=$\frac{\sqrt{3}}{3}$x+$\sqrt{3}$与x轴,y轴的交点分别为A,B,将∠OBA对折,折痕交x轴于点C,一过点B的抛物线顶点恰好在点C.
(1)直接写出点C的坐标,并求出抛物线的解析式:
(2)Q为线段BC上一点,请求出|QA-QO|的取值范围;
(3)在x轴上有一点D(1,0),连接BD,在△BCD中有一点E,E点到△BCD各顶点的距离相等,直线DE交抛物线的对称轴于点F.
①在图2中作出点E和点F,并求出点E的坐标;
②当x>-1时,在直线CE和抛物线上是否分别存在点M和点N,使四边形FCMN为特殊梯形?若存在,求点M,N的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.已知:在?ABCD中,AE⊥BC,垂足为E,CE=CD,点F为CE的中点,点G为CD上的一点,连接DF,EG,AG,∠1=∠2.
(1)求证:G为CD的中点.
(2)若CF=2.5,AE=4,求BE的长.

查看答案和解析>>

同步练习册答案