分析 (1)要证明方程有两个不相等的实数根,只要证明判别式△=b2-4ac的值大于0即可;
(2)根据一元二次方程的根与系数的关系可以得到两根的和是6,结合x1+2x2=14即可求得方程的两个实根,进而可求k的值.
解答 (1)证明:∵b2-4ac=(-6)2-4×1×(-k2)=36+4k2>0,
∴方程有两个不相等的实数根.
(2)解:∵x1+x2=6,
又∵x1+2x2=14,
∴6+x2=14,
∴x2=8,x1=-2.
将x1=-2代入原方程得:(-2)2-6×(-2)-k2=0,
解得k=±4.
点评 本题考查了一元二次方程根的判别式和根与系数的关系的应用,根据一元二次方程的根与系数的关系得出x1+x2=6,代入x1+2x2=14求出x2=8是解题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{4}{7}$ | C. | $\frac{5}{4}$ | D. | $\frac{7}{4}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com