13£®Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬¡÷CDEµÄ¶¥µãCµã×ø±êΪC£¨1£¬-2£©£¬µãDµÄºá×ø±êΪ$\frac{19}{5}$£¬½«¡÷CDEÈÆµãCÐýתµ½¡÷CBO£¬µãDµÄ¶ÔÓ¦µãBÔÚxÖáÉÏ£®Å×ÎïÏßy=ax2+bx+cÒÔµãCΪ¶¥µã£¬ÇÒ¾­¹ýµãB£¬ËüÓëxÖáµÄÁíÒ»¸ö½»µãΪµãA£®
£¨1£©Í¼ÖУ¬¡ÏOCE=¡ÏBCD£»
£¨2£©ÇóÅ×ÎïÏߵĽâÎöʽ£»
£¨3£©Å×ÎïÏßÉÏÊÇ·ñ´æÔÚµãP£¬Ê¹S¡÷PAE=$\frac{1}{2}$S¡÷CDE£¿Èô´æÔÚ£¬Ö±½Óд³öµãPµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©¸ù¾ÝÐýתµÄÐÔÖÊÒ׵áÏOCE=¡ÏBCD£»
£¨2£©×÷CH¡ÍOEÓÚH£¬Èçͼ£¬¸ù¾ÝÐýתµÄÐÔÖʵÃCO=CE£¬CB=CD£¬OB=DE£¬ÔòÀûÓõÈÑüÈý½ÇÐεÄÐÔÖʵÃOH=HE=1£¬ÔòEµã×ø±êΪ£¨2£¬0£©£¬ÉèB£¨m£¬0£©£¬D£¨$\frac{19}{5}$£¬n£©£¬ÀûÓÃÁ½µã¼äµÄ¾àÀ빫ʽµÃCD2=£¨1-$\frac{19}{5}$£©2+£¨-2-n£©2£¬CB2=£¨1-m£©2+22£¬DE2=£¨2-$\frac{19}{5}$£©2+n2£¬ËùÒÔ£¨1-$\frac{19}{5}$£©2+£¨-2-n£©2=£¨1-m£©2+22£¬£¨2-$\frac{19}{5}$£©2+n2=m2£¬½â¹ØÓÚm¡¢nµÄ·½³Ì×éµÃµ½m=3£¬n=-$\frac{12}{5}$£¬ÔòB£¨3£¬0£©£¬È»ºóÉè¶¥µãʽy=a£¨x-1£©2-2£¬ÔÙ°ÑBµã×ø±ê´úÈëÇó³öa¼´¿ÉµÃµ½Å×ÎïÏß½âÎöʽ£»
£¨3£©ÏÈÀûÓÃÅ×ÎïÏߵĶԳÆÐԵõ½A£¨-1£¬0£©£¬ÔÙ¸ù¾ÝÐýתµÄÐÔÖʵá÷CDE¡Õ¡÷CBO£¬ÔòS¡÷CDE=S¡÷CBO=3£¬ÉèP£¨t£¬$\frac{1}{2}$t2-t-$\frac{3}{2}$£©£¬ÀûÓÃÈý½ÇÐÎÃæ»ý¹«Ê½µÃµ½$\frac{1}{2}$•3•|$\frac{1}{2}$t2-t-$\frac{3}{2}$|=$\frac{1}{2}$•3£¬Ôò$\frac{1}{2}$t2-t-$\frac{3}{2}$=1»ò$\frac{1}{2}$t2-t-$\frac{3}{2}$=-1£¬È»ºó·Ö±ð½â¹ØÓÚtµÄÒ»Ôª¶þ´Î·½³ÌÇó³öt£¬´Ó¶ø¿ÉµÃµ½Âú×ãÌõ¼þµÄPµã×ø±ê£®

½â´ð ½â£º£¨1£©¡ß¡÷CDEÈÆµãCÐýתµ½¡÷CBO£¬
¡à¡ÏOCE=¡ÏBCD£»
¹Ê´ð°¸ÎªBCD£»
£¨2£©×÷CH¡ÍOEÓÚH£¬Èçͼ£¬
¡ß¡÷CDEÈÆµãCÐýתµ½¡÷CBO£¬
¡àCO=CE£¬CB=CD£¬OB=DE£¬
¡àOH=HE=1£¬
¡àOE=2£¬
¡àEµã×ø±êΪ£¨2£¬0£©£¬
ÉèB£¨m£¬0£©£¬D£¨$\frac{19}{5}$£¬n£©£¬
¡ßCD2=£¨1-$\frac{19}{5}$£©2+£¨-2-n£©2£¬CB2=£¨1-m£©2+22£¬DE2=£¨2-$\frac{19}{5}$£©2+n2£¬
¡à£¨1-$\frac{19}{5}$£©2+£¨-2-n£©2=£¨1-m£©2+22£¬£¨2-$\frac{19}{5}$£©2+n2=m2£¬
¡àm=3£¬n=-$\frac{12}{5}$£¬
¡àB£¨3£¬0£©£¬
ÉèÅ×ÎïÏß½âÎöʽΪy=a£¨x-1£©2-2£¬
°ÑB£¨3£¬0£©´úÈëµÃ4a-2=0£¬½âµÃa=$\frac{1}{2}$£¬
¡àÅ×ÎïÏß½âÎöʽΪy=$\frac{1}{2}$£¨x-1£©2-2£¬¼´y=$\frac{1}{2}$x2-x-$\frac{3}{2}$£»
£¨3£©´æÔÚ£®
AÓëµãB¹ØÓÚÖ±Ïßx=1¶Ô³Æ£¬
¡àA£¨-1£¬0£©£¬
¡ß¡÷CDEÈÆµãCÐýתµ½¡÷CBO£¬
¡à¡÷CDE¡Õ¡÷CBO£¬
¡àS¡÷CDE=S¡÷CBO=$\frac{1}{2}$•2•3=3£¬
ÉèP£¨t£¬$\frac{1}{2}$t2-t-$\frac{3}{2}$£©£¬
¡ßS¡÷PAE=$\frac{1}{2}$S¡÷CDE£¬
¡à$\frac{1}{2}$•3•|$\frac{1}{2}$t2-t-$\frac{3}{2}$|=$\frac{1}{2}$•3£¬
¡à$\frac{1}{2}$t2-t-$\frac{3}{2}$=1»ò$\frac{1}{2}$t2-t-$\frac{3}{2}$=-1£¬
½â·½³Ì$\frac{1}{2}$t2-t-$\frac{3}{2}$=1µÃt1=1+$\sqrt{6}$£¬t2=1-$\sqrt{6}$£¬´ËʱPµã×ø±êΪ£¨1+$\sqrt{6}$£¬1£©»ò£¨1-$\sqrt{6}$£¬1£©£»
½â·½³Ì$\frac{1}{2}$t2-t-$\frac{3}{2}$=-1µÃt1=1+$\sqrt{2}$£¬t2=1-$\sqrt{2}$£¬´ËʱPµã×ø±êΪ£¨1+$\sqrt{2}$£¬-1£©»ò£¨1-$\sqrt{2}$£¬-1£©£»
×ÛÉÏËùÊö£¬Âú×ãÌõ¼þµÄPµã×ø±êΪ£¨1+$\sqrt{6}$£¬1£©»ò£¨1-$\sqrt{6}$£¬1£©»ò£¨1+$\sqrt{2}$£¬-1£©»ò£¨1-$\sqrt{2}$£¬-1£©£®

µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯ÊýµÄ×ÛºÏÌ⣺ÊìÁ·ÕÆÎÕ¶þ´Îº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷¡¢¶þ´Îº¯ÊýµÄÐÔÖʺÍÐýתµÄÐÔÖÊ£»»áÀûÓôý¶¨ÏµÊý·¨Çó¶þ´Îº¯Êý½âÎöʽ£»Àí½â×ø±êÓëͼÐÎÐÔÖÊ£¬¼ÇסÁ½µã¼äµÄ¾àÀ빫ʽ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®Èçͼ£¬¶þ´Îº¯Êýy=-x2-2xµÄͼÏóÓëxÖá½»ÓÚµãA£¬O£¬ÔÚÅ×ÎïÏßÉÏÓÐÒ»µãP£¬Âú×ãS¡÷AOP=3£¬ÔòµãPµÄ×ø±êÊÇ£¨1£¬-3£©»ò£¨-3£¬-3£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®Èçͼ£¬¡÷ABCÖУ¬E¡¢F¡¢D·Ö±ðÊÇAB¡¢AC¡¢BCÉϵĵ㣬ÇÒÂú×ã$\frac{AE}{EB}=\frac{AF}{FC}=\frac{2}{3}$£¬ÔòS¡÷ABC£ºS¡÷EFD=25£º6£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®¶ÁÈ¡±í¸ñÖеÄÐÅÏ¢£¬½â¾öÎÊÌ⣺
n=1a1=$\sqrt{2}$+2$\sqrt{3}$ b1=$\sqrt{3}$+2 c1=1+2$\sqrt{2}$
n=2a2=b1+2c1 b2=c1+2a1 c2=a1+2b1
n=3a3=b2+2c2 b3=c2+2a2 c3=a2+2b2
¡­¡­¡­¡­
£¨1£©¼ÆË㣺a1+b1+c1=3$\sqrt{2}$+3$\sqrt{3}$+3£»
£¨2£©Âú×ã$\frac{{{a_n}+{b_n}+{c_n}}}{{\sqrt{3}+\sqrt{2}}}¡Ý81£¨\sqrt{3}-\sqrt{2}+1£©$µÄn¿ÉÒÔÈ¡µÃµÄ×îСÕýÕûÊýÊÇ4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Èçͼ£¬AC=AD£¬Ïß¶ÎAB¾­¹ýÏß¶ÎCDµÄÖеãE£¬ÇóÖ¤£ºBC=BD£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬OÊÇ×ø±êÔ­µã£¬µãAµÄ×ø±êΪ£¨-4£¬0£©£¬µãBµÄ×ø±êΪ£¨0£¬b£©£¨b
£¾0£©£®PÊÇÖ±ÏßABÉϵÄÒ»¸ö¶¯µã£¬×÷PC¡ÍxÖᣬ´¹×ãΪC£®¼ÇµãP¹ØÓÚyÖáµÄ¶Ô³ÆµãΪP¡ä£¨µãP¡ä²»ÔÚyÖáÉÏ£©£¬Á¬½áPP¡ä£¬P¡äA£¬P¡äC£®ÉèµãPµÄºá×ø±êΪa£®
£¨1£©µ±b=3ʱ£¬ÈôµãP¡äµÄ×ø±êÊÇ£¨-1£¬m£©£¬ÇómµÄÖµ£»
£¨2£©ÈôµãPÔÚµÚÒ»ÏóÏÞ£¬¼ÇÖ±ÏßABÓëP¡äCµÄ½»µãΪD£¬µ±P¡äD£ºP¡äC=1£º4ʱ£¬ÇóaµÄÖµ£»
£¨3£©sÊÇ·ñͬʱ´æÔÚa¡¢b£¬Ê¹¡÷P¡äCAΪµÈÑüÖ±½ÇÈý½ÇÐΣ¿Èô´æÔÚ£¬ÇëÇó³öËùÓÐÂú×ãÒªÇóµÄa£¬bµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÈçͼËùʾµÄ¼¸ºÎÌåÊÇÓɯߏöÏàͬµÄСÕý·½Ìå×éºÏ¶ø³ÉµÄ£¬ËüµÄ¸©ÊÓͼÊÇ£¨¡¡¡¡£©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÎÊÌâÇé¾³
Èçͼ1£¬ÔÚ¡÷AOBÓë¡÷DOEÖУ¬¡ÏAOB=¡ÏDOE=90¡ã£¬OA=OB£¬OD=OE£¬µ±µãD£¬E·Ö±ðÔÚ¡÷AOBµÄ±ßOA£¬OBÉÏʱ£¬½áÂÛ£¨1£©AD=BEºÍ£¨2£©AD¡ÍBE¶¼³ÉÁ¢£®
ÎÊÌâ̽¾¿
Èçͼ2£¬Èôµ±µãD£¬E²»ÔÚ¡÷AOBµÄ±ßOA£¬OBÉÏʱ£¬ÉÏÊö½áÂÛÊÇ·ñ³ÉÁ¢£¿ÀíÓÉ£®
ÎÊÌâÑÓÉì
Èçͼ3£¬½«ÎÊÌâÇé¾³ÖеÄÌõ¼þ£¬¡ÏAOB=¡ÏDOE=90¡ã»»Îª¡ÏAOB=¡ÏDOE=40¡ã£¬ÇÒµãD£¬E²»ÔÚ¡÷AOBµÄ±ßOA£¬OBÉÏʱ£¬ÉÏÊö½áÂÛÊÇ·ñ³ÉÁ¢£¿ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®Èçͼ£¬ËıßÐÎOABC·ÅÖÃÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬AB¡ÎCO£¬OAËùÔÚÖ±ÏßΪxÖᣬOCËùÔÚÖ±ÏßΪyÖᣬ·´±ÈÀýº¯Êýy=$\frac{k}{x}£¨{k£¾0£¬x£¾0}£©$µÄͼÏó¾­¹ýABµÄÖеãD£¬²¢ÇÒÓëCB½»ÓÚµãE£¬ÒÑÖª$\frac{CE}{CB}=\frac{1}{3}£¬OC=\frac{7}{2}$£®ÔòABµÄ³¤µÈÓÚ£¨¡¡¡¡£©
A£®2.5B£®2C£®1.5D£®1

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸