精英家教网 > 初中数学 > 题目详情
1.读取表格中的信息,解决问题:
n=1a1=$\sqrt{2}$+2$\sqrt{3}$ b1=$\sqrt{3}$+2 c1=1+2$\sqrt{2}$
n=2a2=b1+2c1 b2=c1+2a1 c2=a1+2b1
n=3a3=b2+2c2 b3=c2+2a2 c3=a2+2b2
(1)计算:a1+b1+c1=3$\sqrt{2}$+3$\sqrt{3}$+3;
(2)满足$\frac{{{a_n}+{b_n}+{c_n}}}{{\sqrt{3}+\sqrt{2}}}≥81(\sqrt{3}-\sqrt{2}+1)$的n可以取得的最小正整数是4.

分析 (1)根据表格中的数据确定出a1+b1+c1的值即可;
(2)根据表格中数据得出an+bn+cn=3n-1(a1+b1+c1)=3n($\sqrt{3}$+$\sqrt{2}$+1),代入不等式计算可得n的取值范围.

解答 解:(1)根据表格中的数据得:a1+b1+c1=$\sqrt{2}$+2$\sqrt{3}$+$\sqrt{3}$+2+1+2$\sqrt{2}$=3$\sqrt{2}$+3$\sqrt{3}$+3;
(2)∵a2+b2+c2=b1+2c1+c1+2a1+a1+2b1=3(a1+b1+c1),
a3+b3+c3=b2+2c2+c2+2a2+a2+2b2=3(a2+b2+c2)=32(a1+b1+c1),

∴an+bn+cn=3n-1(a1+b1+c1)=3n-1(3$\sqrt{2}$+3$\sqrt{3}$+3)=3n($\sqrt{3}$+$\sqrt{2}$+1),
又∵$\frac{{{a_n}+{b_n}+{c_n}}}{{\sqrt{3}+\sqrt{2}}}≥81(\sqrt{3}-\sqrt{2}+1)$,
∴$\frac{{3}^{n}(\sqrt{3}+\sqrt{2}+1)}{\sqrt{3}+\sqrt{2}}$≥81($\sqrt{3}$-$\sqrt{2}$+1)
解得:n≥4,
∴n可以取得最小正整数是4,
故答案为:(1)3$\sqrt{2}$+3$\sqrt{3}$+3;(2)4.

点评 本题主要考查数字的变化规律和实数的运算及解不等式的能力,根据表格数据发现an+bn+cn的规律是关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

11.将抛物线y=3x2通过平移得到抛物线y=3(x-1)2-2,下列平移方法正确的是(  )
A.先向上平移2个单位长度,再向右平移1个单位长度
B.先向下平移2个单位长度,再向右平移1个单位长度
C.先向上平移2个单位长度,再向左平移1个单位长度
D.先向下平移2个单位长度,再向左平移1个单位长度

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.在数轴上表示-12与-3的点的距离是(  )
A.15B.9C.-15D.8

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.在Rt△ABC中,∠C=90°,tanA=$\frac{2}{3}$,AC=6,则BC=(  )
A.9B.4C.18D.12

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.计算:
(1)(2x+3y)(3x-2y);                 
(2)(x+2)(x+3)-(x+6)(x-1).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.如图,一圆柱高为8cm,底面周长为30cm,蚂蚁在圆柱表面爬行,从点A爬到点B的最短路程是(  )
A.15cmB.17cmC.18cmD.30cm

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,在平面直角坐标系中,△CDE的顶点C点坐标为C(1,-2),点D的横坐标为$\frac{19}{5}$,将△CDE绕点C旋转到△CBO,点D的对应点B在x轴上.抛物线y=ax2+bx+c以点C为顶点,且经过点B,它与x轴的另一个交点为点A.
(1)图中,∠OCE=∠BCD;
(2)求抛物线的解析式;
(3)抛物线上是否存在点P,使S△PAE=$\frac{1}{2}$S△CDE?若存在,直接写出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如果关于x的不等(2m-n)x+m-5n>0的解集为x<$\frac{10}{7}$,试求关于x的不等式mx>n的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.方程3x(x-1)=2(x-1)的解是(  )
A.x=1B.x=$\frac{2}{3}$C.x1=1,x2=$\frac{2}{3}$D.x1=1,x2=-$\frac{2}{3}$

查看答案和解析>>

同步练习册答案