【题目】2018年5月3日,中国科学院在上海发布了中国首款人工智能芯片:寒武纪(MLU100),该芯片在平衡模式下的等效理论峰值速度达每秒128 000 000 000 000次定点运算,将数
128 000 000 000 000用科学计数法表示为( )
A. 1.281014 B. 1.2810-14 C. 1281012 D. 0.1281011
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=-x2-x+与x轴交于A、B两点(点A在点B的左侧),与y轴于点C,已知点D(0,-).
(1)求直线AC的解析式;
(2)如图1,P为直线AC上方抛物线上的一动点,当△PBD的面积最大时,过P作PQ⊥x轴于点Q,M为抛物线对称轴上的一动点,过M作y轴的垂线,垂足为点N,连接PM、NQ,求PM+MN+NQ的最小值;
(3)在(2)问的条件下,将得到的△PBQ沿PB翻折得到△PBQ′,将△PBQ′沿直线BD平移,记平移中的△PBQ′为△P′B′Q″,在平移过程中,设直线P′B′与x轴交于点E,则是否存在这样的点E,使得△B′EQ″为等腰三角形?若存在,求此时OE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点B,E,C,F在一条直线上,AC∥DE,∠A=∠D,AB=DF.
(1)试说明:△ABC≌△DFE;
(2)若BF=13,EC=7,求BC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(3分)如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有( )
A. 4个 B. 3个 C. 2个 D. 1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为a的正方形的一角剪去一个边长为b的正方形,把剩余的部分(图中的阴影部分)裁剪后拼成右边的长方形.
(1)请写出上述剪拼过程中所揭示的乘法公式;
(2)请运用乘法公式简便计算:20192﹣2020×2018.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,M、N、C三点的坐标分别为(,1),(3,1),(3,0),点A为线段MN上的一个动点,连接AC,过点A作交y轴于点B,当点A从M运动到N时,点B随之运动,设点B的坐标为(0,b),则b的取值范围是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明在一条笔直的公路进行跑步训练,可以用如图所示一条直线上来刻画他在公路上跑步情境.假定向右跑步的路程记为正数,向左跑步的路程记为负数,则所跑步的各段路程依次记为:+5,-3,-6,+8,-6,+12,-10.(单位:百米)
(1)小明最后是否回到出发点?
(2)小明在跑步过程中距离出发点最远是多少米?.
(3)在跑步过程中,如果小明每跑1千米会消耗约60卡热量,那么小明此次训练一共会消耗多少卡?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为( )
A. 16B. 32C. 64D. 128
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入,下表是某周的生产情况(超产记为正、减产记为负):
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 七 |
增减产值 |
(1)根据记录的数据可知该厂星期五生产自行车__________辆.
(2)根据记录的数据可知该厂本周实际生产自行车_________辆.
(3)该厂实行每日计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元,若没有完成任务,少生产一辆扣20元,那么该厂工人这一周的工作总额是多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com