精英家教网 > 初中数学 > 题目详情

【题目】用配方法解方程x2﹣2x﹣1=0时,原方程应变形为( )
A.(x+1)2=2
B.(x+2)2=5
C.(x﹣1)2=2
D.(x﹣2)2=5

【答案】C
【解析】解:由原方程移项,得
x2﹣2x=1,
方程的两边同时加上一次项系数﹣2的一半的平方1,得
x2﹣2x+1=2,
∴(x﹣1)2=2.
故选:C.
【考点精析】根据题目的已知条件,利用配方法的相关知识可以得到问题的答案,需要掌握左未右已先分离,二系化“1”是其次.一系折半再平方,两边同加没问题.左边分解右合并,直接开方去解题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在等边△ABC中,点D,E分别在边BC,AB上,且BD=AE,AD与CE交于点F.

(1)求证:AD=CE;
(2)求∠DFC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某服装店用4500元购进一批衬衫,很快售完,服装店老板又用2100元购进第二批该款式的衬衫,进货量是第一次的一半,但进价每件比第一批降低了10元.

1)这两次各购进这种衬衫多少件?

2)若第一批衬衫的售价是200/件,老板想让这两批衬衫售完后的总利润不低于1950元,则第二批衬衫每件至少要售多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解某社区居民的用电情况,随机对该社区10户居民进行调查,下表是这10户居民20174月份用电量的调查结果:

民(户)

1

2

3

4

月用电量(度/户)

30

42

50

51

那么关于这10户居民月用电量(单位:度),下列说法错误的是(  )

A. 中位数是50 B. 方差是42 C. 众数是51 D. 极差是21

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】请根据图中提供的信息,回答下列问题:

(1)一个暖瓶与一个水杯分别是多少元?(只填写结果)

一个暖瓶   元;一个水杯   元.

(2)甲、乙两家商场同时出售同样的暖瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打九折;乙商场规定:买一个暖瓶赠送二个水杯,单独买水杯不优惠.若某单位想要买4个暖瓶和15个水杯,请问选择哪家商场购买更合算,并说明理由.

(3)若必须买5个暖瓶,则当买多少个水杯时到两家商城一样合算.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC的三个顶点在格点上.

(1)作出与△ABC关于x轴对称的图形△A1B1C1
(2)求出A1 , B1 , C1三点坐标;
(3)求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解答
(1)如图,在四边形ABCD中,AB=AD,∠B=∠D=90°,E,F分别是边BC,CD上的点,且∠EAF= ∠BAD.
求证:EF=BE+FD;

(2)如图,在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是边BC,CD上的点,且∠EAF= ∠BAD,(1)中的结论是否仍然成立?

(3)如图,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF= ∠BAD,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】写出一个正比例函数,使其图象经过第二、四象限:y=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xoy中, 一块含60°角的三角板作如图摆放,斜边AB在x轴上,直角顶点C在y轴正半轴上,已知点A(-1,0).

(1)请直接写出点B、C的坐标:B( )、C( );并求经过A、B、C三点的抛物线解析式;

(2)现有与上述三角板完全一样的三角板DEF(其中∠EDF=90°,∠DEF=60°),把顶点E放在线段AB上(点E是不与A、B两点重合的动点),并使ED所在直线经过点C. 此时,EF所在直线与(1)中的抛物线交于第一象限的点M.连接MB和MC,当△OCE∽△OBC时,判断四边形AEMC的形状,并给出证明;

(3)有一动点P在(1)中的抛物线上运动,是否存在点P,以点P为圆心作圆能和直线AC和x轴同时相切 ,若存在,求出圆心P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案