精英家教网 > 初中数学 > 题目详情

【题目】解答
(1)如图,在四边形ABCD中,AB=AD,∠B=∠D=90°,E,F分别是边BC,CD上的点,且∠EAF= ∠BAD.
求证:EF=BE+FD;

(2)如图,在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是边BC,CD上的点,且∠EAF= ∠BAD,(1)中的结论是否仍然成立?

(3)如图,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF= ∠BAD,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.

【答案】
(1)证明:延长EB到G,使BG=DF,连接AG.

∵∠ABG=∠ABC=∠D=90°,AB=AD,

∴△ABG≌△ADF.

∴AG=AF,∠1=∠2.

∴∠1+∠3=∠2+∠3=∠EAF= ∠BAD.

∴∠GAE=∠EAF.

又AE=AE,

∴△AEG≌△AEF.

∴EG=EF.

∵EG=BE+BG.

∴EF=BE+FD


(2)解:(1)中的结论EF=BE+FD仍然成立
(3)证明:结论EF=BE+FD不成立,应当是EF=BE﹣FD.

证明:在BE上截取BG,使BG=DF,连接AG.

∵∠B+∠ADC=180°,∠ADF+∠ADC=180°,

∴∠B=∠ADF.

∵AB=AD,

∴△ABG≌△ADF.

∴∠BAG=∠DAF,AG=AF.

∴∠BAG+∠EAD=∠DAF+∠EAD

=∠EAF= ∠BAD.

∴∠GAE=∠EAF.

∵AE=AE,

∴△AEG≌△AEF.

∴EG=EF

∵EG=BE﹣BG

∴EF=BE﹣FD


【解析】(1)可通过构建全等三角形来实现线段间的转换.延长EB到G,使BG=DF,连接AG.目的就是要证明三角形AGE和三角形AEF全等将EF转换成GE,那么这样EF=BE+DF了,于是证明两组三角形全等就是解题的关键.三角形ABE和AEF中,只有一条公共边AE,我们就要通过其他的全等三角形来实现,在三角形ABG和AFD中,已知了一组直角,BG=DF,AB=AD,因此两三角形全等,那么AG=AF,∠1=∠2,那么∠1+∠3=∠2+∠3=∠EAF= ∠BAD.由此就构成了三角形ABE和AEF全等的所有条件(SAS),那么就能得出EF=GE了.(2)思路和作辅助线的方法与(1)完全一样,只不过证明三角形ABG和ADF全等中,证明∠ABG=∠ADF时,用到的等角的补角相等,其他的都一样.因此与(1)的结果完全一样.(3)按照(1)的思路,我们应该通过全等三角形来实现相等线段的转换.就应该在BE上截取BG,使BG=DF,连接AG.根据(1)的证法,我们可得出DF=BG,GE=EF,那么EF=GE=BE﹣BG=BE﹣DF.所以(1)的结论在(3)的条件下是不成立的.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,直线CD切⊙O于点MBECD于点E

1)求证:∠BME=MAB

2)求证:BM2=BEAB

3)若BE=sinBAM=,求线段AM的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线l是一条河,A,B两地相距5km,A,B两地到l的距离分别为3km、6km,欲在l上的某点M处修建一个水泵站,向A,B两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则铺设的管道最短的是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用配方法解方程x2﹣2x﹣1=0时,原方程应变形为( )
A.(x+1)2=2
B.(x+2)2=5
C.(x﹣1)2=2
D.(x﹣2)2=5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠BAC=110°,DE,FG分别为AB,AC的垂直平分线,E,G分别为垂足.

(1)求∠DAF的度数;
(2)如果BC=10cm,求△DAF的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,已知⊙O的半径为1,菱形ABCD的三个顶点ABD在⊙O上,且CD与⊙O相切.

(1)求证:BC与⊙O相切;

(2)求阴影部分面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:180°﹣20°40′=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一个不透明袋子中有1个红球、1 个绿球和n个白球,这些球除颜色外都相同.

(1)从袋中随机摸出1个球,记录下颜色后放回袋子中并搅匀,不断重复该试验.发现摸到白球的频率稳定在0.75,则n的值为

(2)当n=2时,把袋中的球搅匀后任意摸出2个球,求摸出的2个球颜色不同的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】写出一个以12为根,且二次项系数为1的一元二次方程为_____

查看答案和解析>>

同步练习册答案