精英家教网 > 初中数学 > 题目详情

【题目】在一个不透明袋子中有1个红球、1 个绿球和n个白球,这些球除颜色外都相同.

(1)从袋中随机摸出1个球,记录下颜色后放回袋子中并搅匀,不断重复该试验.发现摸到白球的频率稳定在0.75,则n的值为

(2)当n=2时,把袋中的球搅匀后任意摸出2个球,求摸出的2个球颜色不同的概率.

【答案】(1)6;(2)

【解析】试题分析:(1)根据白球的频率稳定在0.75附近得到白球的概率约为0.75,根据白球个数确定出总个数,进而确定出黑球个数;
(2)将所有等可能的结果列举出来,利用概率公式求解即可.

试题解析:(1)根据题意得:
解得:n=6,
则n的值为6,
(2)任意摸出2个球,共有12种等可能的结果,即(红,绿)、(红,白1)、(红,白2)、(绿,红)、(绿,白1)、(绿,白1)、(白1,红)、(白1,绿)、(白1,白2)、(白2,红)、(白2,绿)、(白2,白1),
其中2个球颜色不同的结果有10种,所以所求概率为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某服装店用4500元购进一批衬衫,很快售完,服装店老板又用2100元购进第二批该款式的衬衫,进货量是第一次的一半,但进价每件比第一批降低了10元.

1)这两次各购进这种衬衫多少件?

2)若第一批衬衫的售价是200/件,老板想让这两批衬衫售完后的总利润不低于1950元,则第二批衬衫每件至少要售多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解答
(1)如图,在四边形ABCD中,AB=AD,∠B=∠D=90°,E,F分别是边BC,CD上的点,且∠EAF= ∠BAD.
求证:EF=BE+FD;

(2)如图,在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是边BC,CD上的点,且∠EAF= ∠BAD,(1)中的结论是否仍然成立?

(3)如图,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF= ∠BAD,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】写出一个正比例函数,使其图象经过第二、四象限:y=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算﹣1﹣2×(﹣2)的结果等于(
A.3
B.﹣3
C.5
D.﹣5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AD=CB,E,F是AC上两动点,且有DE=BF.

(1)若点E,F运动至如图(1)所示的位置,且有AF=CE,求证:△ADE≌△CBF;
(2)若点E,F运动至如图(2)所示的位置,仍有AF=CE,则△ADE≌△CBF还成立吗?为什么?
(3)若点E,F不重合,则AD和CB平行吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点O为△ABC的外心,若∠A=80°,则∠BOC的度数为(
A.40°
B.80°
C.120°
D.160°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xoy中, 一块含60°角的三角板作如图摆放,斜边AB在x轴上,直角顶点C在y轴正半轴上,已知点A(-1,0).

(1)请直接写出点B、C的坐标:B( )、C( );并求经过A、B、C三点的抛物线解析式;

(2)现有与上述三角板完全一样的三角板DEF(其中∠EDF=90°,∠DEF=60°),把顶点E放在线段AB上(点E是不与A、B两点重合的动点),并使ED所在直线经过点C. 此时,EF所在直线与(1)中的抛物线交于第一象限的点M.连接MB和MC,当△OCE∽△OBC时,判断四边形AEMC的形状,并给出证明;

(3)有一动点P在(1)中的抛物线上运动,是否存在点P,以点P为圆心作圆能和直线AC和x轴同时相切 ,若存在,求出圆心P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】因式分解:﹣2x2y+12xy﹣16y=

查看答案和解析>>

同步练习册答案