精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,AB=10AC=8BC=6,以边AB的中点O为圆心,作半圆与AC相切,点PQ分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是( )

A. B. C. D.

【答案】C

【解析】

如图OAC相切于点E连接OEOP1BC垂足为P1OQ1此时垂线段OP1最短P1Q1最小值为OP1OQ1求出OP1如图当Q2AB边上时P2B重合时P2Q2最大值=5+3=8,由此不难解决问题

如图OAC相切于点E连接OEOP1BC垂足为P1OQ1此时垂线段OP1最短P1Q1最小值为OP1OQ1

AB=10,AC=8,BC=6,∴AB2AC2+BC2,∴∠C=90°.

∵∠OP1B=90°,∴OP1AC

AOOB,∴P1CP1B,∴OP1AC=4,∴P1Q1最小值为OP1OQ1=1,如图Q2AB边上时P2B重合时P2Q2经过圆心经过圆心的弦最长P2Q2最大值=5+3=8,∴PQ长的最大值与最小值的和是9.

故选C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某商场服装部销售一种名牌衬衫,平均每天可售出件,每件盈利元.为了扩大销售,减少库存,商场决定降价销售,经调查,每件降价元时,平均每天可多卖出件.

(1)若商场要求该服装部每天盈利元,每件衬衫应降价多少元?

(2)试说明每件衬衫降价多少元时,商场服装部每天盈利最多.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,菱形OABC的顶点A在x轴的正半轴上,反比例函数y= 的图象经过点C(3,m).

(1)求菱形OABC的周长;

(2)求点B的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读材料:

对于线段的垂直平分线我们有如下结论:到线段两个端点距离相等的点在线段的垂直平分线上.即如图,若PAPB,则点P在线段AB的垂直平分线上.

请根据阅读材料,解决下列问题:

如图,直线CD是等边ABC的对称轴,点DAB上,点E是线段CD上的一动点(点E不与点CD重合),连结AEBEABE经顺时针旋转后与BCF重合.

1)旋转中心是点   ,旋转了   (度);

2)当点E从点D向点C移动时,连结AF,设AFCD交于点P,在图中将图形补全,并探究APC的大小是否保持不变?若不变,请求出APC的度数;若改变,请说出变化情况.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;b<a+c;4a+2b+c>0;2c<3b;b2>4ac;其中正确的结论有______.(填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知AB是⊙O的直径,弦CDAB相交,BAC=38°

1)如图①,若D为弧AB的中点,求∠ABC和∠ABD的大小;

2)如图②,过点D作⊙O的切线,与AB的延长线交于点P,若DPAC,求∠OCD的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某品牌牛奶供应商提供A,B,C,D四种不同口味的牛奶供学生饮用.某校为了了解学生对不同口味的牛奶的喜好,对全校订牛奶的学生进行了随机调查,并根据调查结果绘制了如下两幅不完整的统计图.根据统计图的信息解决下列问题

(1)本次调查的学生有多少人?

(2)补全上面的条形统计图;

(3)扇形统计图中C对应的中心角度数是_____

(4)若该校有600名学生订了该品牌的牛奶,每名学生每天只订一盒牛奶,要使学生能喝到自己喜欢的牛奶,则该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约多少盒?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=k1x+b的图象与反比例函数的图象交于M、N两点.

(1)求反比例函数和一次函数的解析式;

(2)根据图象写出使反比例函数的值大于一次函数的值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,ABDC,AB=AD,对角线AC、BD相交于点O,AC平分∠BAD,过点CCEABAB的延长线于点E,若AB=,BD=2,则OE的长等于________

查看答案和解析>>

同步练习册答案