精英家教网 > 初中数学 > 题目详情
14.如图:△ABC中,AD,BF为中线,AD,BF相交于G,CE∥FB交AD的延长线于E,AG=6cm,求DE的长.

分析 根据ASA证明△DBG与△DCE全等,再利用三角形中线的性质解答即可.

解答 解:∵CE∥FB,
∴∠GBD=∠ECD,
∵AD,BF为中线,
∴CD=DB,
在△DBG与△DCE中,
$\left\{\begin{array}{l}{∠GBD=∠ECD}\\{CD=DB}\\{∠CDE=∠BDG}\end{array}\right.$,
∴△DBG≌△DCE,
∴DG=DE,
∵AG=6cm,
∴DE=3cm.

点评 本题考查了全等三角形的判定和性质,正确证明三角形全等是关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

16.已知:a≠0且b≠0,a2+b2-$\frac{10}{3}$ab=0,那么$\frac{a+b}{a-b}$的值等于-2或2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.解不等式组:$\left\{\begin{array}{l}{3-x>x+1}\\{(2x-3)-(5x+2)≤1}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.已知抛物线y=mx2+2mx+n交x轴于A、B两点,交y轴于C(0,3),顶点为D,且AB=4.

(1)求抛物线的解析式;
(2)点P为对称轴右侧抛物线上一点,点S在x轴上,当△DPS为等腰直角三角形时,求点P的坐标;
(3)将抛物线沿对称轴向下平移,使顶点落在x轴上,设点D关于x轴的对称点为M,过M的直线交抛物线于E、F(点E在对称轴左侧),连DE,DF,且S△DEF=20.求E、F的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图1,在平面直角坐标系中,抛物线y=ax2+bx+8(a≠0)与x轴交于A、B两点、与y轴交于点C,经过点B的直线y=-x+4与y轴交于点D,点P在抛物线的对称轴上,且P点的横坐标是1.
(1)求抛物线的解析式;
(2)在第一象限的抛物线上有一个动点M,过点M作直线MN⊥x轴于点N,交直线BD于点E,若点M到直线BD的距离与BN的长度之比为2$\sqrt{2}$:1,求点M的坐标;
(3)如图2,若点P位于x轴上方,且∠PAB=60°,点Q是对称轴上的一个动点,将△BPQ绕点P顺时针旋转60°得到△B′PQ′(B的对应点为B′,Q的对应点为Q′),是否存在点Q,使△BQQ′的面积是$\frac{\sqrt{3}}{4}$?若存在,请求出PQ的长;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,△ABC中,∠BAC=120°,AD为△ABC的内角平分线,CF为△ABC的外角平分线,交BA的延长线于点F,连接DF交AC于E,连接BE,求证:BE平分∠ABC.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.用给定长度的绳子围成下面四种几何图形,其面积一定最大的是(  )
A.三角形B.平行四边形C.正方形D.菱形

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,矩形ABCD是一颗水平向右匀速飞行的“卫星”,直线l1是一束高能射线
(1)请你在下面的方格中分别画出“卫星”刚开始被高能射线照射到时的位置及刚好离开高能射线的位置(分别用矩形A1B1C1D1、A2B2C2D2表示);
(2)若小正方形的边长等于1,“卫星”的速度为每秒1个单位长度,则“卫星”被高能射线照射的时间为3秒.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.下列运算正确的是(  )
A.a3÷a=a3(a≠0)B.(-a)4=a4C.3a2•2a2=6a2D.(a-b)2=a2-b2

查看答案和解析>>

同步练习册答案