精英家教网 > 初中数学 > 题目详情

【题目】如图1E是等边三角形ABC的边AB所在直线上一点,D是边BC所在直线上一点,且DC不重合,若ECED.则称D为点C关于等边三角形ABC的反称点,点E称为反称中心.

在平面直角坐标系xOy中,

1)已知等边三角形AOC的顶点C的坐标为(20),点A在第一象限内,反称中心E在直线AO上,反称点D在直线OC上.

①如图2,若E为边AO的中点,在图中作出点C关于等边三角形AOC的反称点D,并直接写出点D的坐标:   

②若AE2,求点C关于等边三角形AOC的反称点D的坐标;

2)若等边三角形ABC的顶点为Bn0),Cn+10),反称中心E在直线AB上,反称点D在直线BC上,且2AE3.请直接写出点C关于等边三角形ABC的反称点D的横坐标t的取值范围:   (用含n的代数式表示).

【答案】(1)①D(-1,0); ②D(2,0);(2)

【解析】

(1)①根据题中反称点与反称中心的定义做出点D,可得坐标;

②易得AO=OC=2,由AE=2,分E点的两个可能的位置(如图3,图4)讨论,可得D点的值;

(2)由(1)可得反称点与反称中心的规律,当B(n,0),C(n+1,0),2≤AE<3可得.

(1) 如图,

D(-1,0)

∵等边三角形AOC的两个顶点为O(0,0),C(2,0),

OC=2.

AO=OC=2.

AE=2可知,点E有两个可能的位置(如图3,图4).

3 4

() 如图3,点E与坐标原点O重合.

EC=EDEC=2,

ED=2.

D是边OC所在直线上一点,且DC不重合,

D点坐标为(2,0) .

() 如图4,点E在边OA的延长线上,且AE=2.

AC=AE=2,

∴∠E=ACE.

∵△AOC为等边三角形,

∴∠OAC =ACO=60°.

∴∠E=ACE=30°.

∴∠OCE=90°.

EC=ED,

∴点D与点C重合.

这与题目条件中的DC不重合矛盾,所以图4中的情况不符合要求,舍去.

综上所述:D(2,0). …

(2).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,反比例函数y= (k≠0)与一次函数y=kx+k(k≠0)在同一平面直角坐标系内的图象可能是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算

13x3x92xx3x8

2)﹣12+20160+2017×(﹣42018

3)(x+4)(x4)﹣(x22

4aba+b)﹣(ab)(a2+b2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2012年6月1日起,国家实施了中央财政补贴条例支持高效节能电器的推广使用,某款定速空调在条例实施后,每购买一台,客户可获财政补贴200元,若同样用11万元所购买的此款空调数台,条例实施后比实施前多10%.求条例实施前此款空调的单价.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系内,点为坐标原点,点轴正半轴上,点轴的负半轴上,点轴正半轴上,,梯形的面积为.

1)求点的坐标;

2)点从点出发以个单位/秒的速度沿向终点运动,同时,点从点出发以个单位秒的速度沿向终点运动,设点的横坐标为,线段的长为,用含的关系式表示,并直接写出相应的范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图1,把△ABC沿DE折叠,使点A落在点A’处,试探索∠1+∠2与∠A的关系.(证明).

(2)如图2,BI平分∠ABC,CI平分∠ACB,把△ABC折叠,使点A与点I重合,若∠1+∠2=130°,求∠BIC的度数;

(3)如图3,在锐角△ABC中,BF⊥AC于点F,CG⊥AB于点G,BF、CG交于点H,把△ABC折叠使点A和点H重合,试探索∠BHC与∠1+∠2的关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】本学期学习了分式方程的解法,下面是晶晶同学的解题过程:

解方程

解:整理,得: …………………………第①步

去分母,得: …………………………第②步

移项,得: ……………………… 第③步

合并同类项,得: ……………………… 第④步

系数化1,得: …………………………第⑤步

检验:当

所以原方程的解是. ………………………第⑥步

上述晶晶的解题过程从第_____步开始出现错误,错误的原因是_________________.请你帮晶晶改正错误,写出完整的解题过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是春运期间的一个回家场景。一种拉杆式旅行箱的示意图如图所示,箱体长AB=50cm,拉杆最大伸长距离BC=30cm,点A到地面的距离AD=8cm,旅行箱与水平面AE成60°角,求拉杆把手处C到地面的距离(精确到1cm).(参考数据:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在正方形网格中,每个小正方形的边长都为1个单位长度,△ABC的三个顶点的位置如图所示,现将ABC平移后得△DEF,使点A的对应点为点D,点B的对应点为点E

(1)画出△DEF

(2)连接AD、BE,则线段ADBE的关系是

(3)求△DEF的面积.

查看答案和解析>>

同步练习册答案