【题目】如图是春运期间的一个回家场景。一种拉杆式旅行箱的示意图如图所示,箱体长AB=50cm,拉杆最大伸长距离BC=30cm,点A到地面的距离AD=8cm,旅行箱与水平面AE成60°角,求拉杆把手处C到地面的距离(精确到1cm).(参考数据: )
科目:初中数学 来源: 题型:
【题目】如图,在长方形ABCD中,点M为CD中点,将△MBC沿BM翻折至△MBE,若∠AME = α,∠ABE = β,则 α 与 β 之间的数量关系为( )
A. α+3β=180° B. β-α=20° C. α+β=80° D. 3β-2α=90°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,E是等边三角形ABC的边AB所在直线上一点,D是边BC所在直线上一点,且D与C不重合,若EC=ED.则称D为点C关于等边三角形ABC的反称点,点E称为反称中心.
在平面直角坐标系xOy中,
(1)已知等边三角形AOC的顶点C的坐标为(2,0),点A在第一象限内,反称中心E在直线AO上,反称点D在直线OC上.
①如图2,若E为边AO的中点,在图中作出点C关于等边三角形AOC的反称点D,并直接写出点D的坐标: ;
②若AE=2,求点C关于等边三角形AOC的反称点D的坐标;
(2)若等边三角形ABC的顶点为B(n,0),C(n+1,0),反称中心E在直线AB上,反称点D在直线BC上,且2≤AE<3.请直接写出点C关于等边三角形ABC的反称点D的横坐标t的取值范围: (用含n的代数式表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知图甲是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均剪成四个小长方形,然后拼成如图乙所示的一个大正方形.
(1)你认为图乙中的阴影部分的正方形的边长= ;
(2)请用两种不同的方法求图乙中阴影部分的面积:
方法一:
方法二:
(3)观察图乙,请你写出下列代数式之间的等量关系:
(m+n)2、(m﹣n)2、mn
.
(4)根据(3)题中的等量关系,解决如下问题:若a+b=8,ab=7,求a﹣b的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】先化简,再求值:a+,其中a=1007.如图是小亮和小芳的解答过程.
(1)_________的解法是错误的;
(2)错误的原因在于未能正确地运用二次根式的性质:_________;
(3)先化简,再求值:a+2,其中a=-2007.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设大和尚有x人,依题意列方程得( )
A. +3(100﹣x)=100 B. ﹣3(100﹣x)=100
C. 3x﹣=100 D. 3x+=100
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了鼓励市民节约用水,我市居民使用自来水计费方式实施阶梯水价,具体标准见表1,表2分别是小明、小丽、小斌、小宇四家2017年的年用水量和缴纳水费情况.
表1:大连市居民自来水实施阶梯水价标准情况:
表2:四个家庭2017年的年用水量和缴纳水费情况:
请你根据表1、表2提供的数据回答下列问题:
(1)表1中的__________,_____________;
(2)小颖家2017年使用自来水共缴纳水费827元,则她家2017年的年用水量是多少立方米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】先阅读下列解题过程,然后回答问题:
解方程:
解:①当≥0时,原方程可化为: ,解得;
②当<0时,原方程可化为: ,解得;
所以原方程的解是或
(1)解方程:
(2)探究:当为何值时,方程 ①无解;②只有一个解;③有两个解。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com