【题目】问题探究:
新定义:
将一个平面图形分为面积相等的两部分的直线叫做该平面图形的“等积线”,其“等积线”被该平面图形截得的线段叫做该平面图形的“等积线段”(例如圆的直径就是圆的“等积线段”)
解决问题:
已知在Rt△ABC中,∠BAC=90°,AB=AC=2.
(1)如图1,若AD⊥BC,垂足为D,则AD是△ABC的一条等积线段,直接写出AD的长;
(2)在图2和图3中,分别画出一条等积线段,并直接写出它们的长度. (要求:图1、图2和图3中的等积线段的长度各不相等)
【答案】(1)AD=2;(2)符合题意的图形见解析,BE=,GH=2
【解析】试题分析:(1)根据等腰直角三角形的性质,底边上的高线即可求得;
(2)作中线BE,中线BE即为一条等积线,利用勾股定理即可求得长度;
作GH//BC,GH将Rt△ABC的面积分为相等的两份,则GH即为一条等积线,根据相似三角形的性质即可求得长度.
试题解析:(1)在Rt△ADC中,
∵AC=2,∠C=45°,
∴AD=2;
(2)符合题意的图形如下所示:
E为AC中点,则有AE= ,
在Rt△ABE中,根据勾股定理可得BE= =;
GH∥BC,S△AGH=S△ABC,
∵GH//BC,∴△AGH∽△ABC,
∴,
∵∠A=90°,AB=AC=,∴BC==4,
∴,
∴GH=2.
科目:初中数学 来源: 题型:
【题目】2019年4月23日,第24个世界读书日,为了推进中华传统文化教育,营造浓郁的读书氛围,我区某学校举办了“让读书成为习惯,让书香飘满校园”主题活动,为此特为每个班级订购了一批新的图书,初一年级两个班订购图书情况如下表:
老舍文集(套) | 四大名善(套) | 总表用(元) | |
初一(1)班 | 4 | 2 | 80 |
初一(2)班 | 2 | 3 | 520 |
(1)求老舍文集和四大名著每套各是多少元;
(2)学校准备再购买老舍文集和四大名著共10套,总费用不超过700元。问学校有哪几种购买方案。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AD,AF分别为△ABC的中线和高,BE为△ABD的角平分线.
(1)若∠BED=40°,∠BAD=25°,求∠BAF的大小;
(2)若△ABC的面积为40,BD=5,求AF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图1,在△ABC中,∠A,P是BC边上的一点,,是点P关于AB、AC的对称点,连结,分别交AB、AC于点D、E.
①若,求的度数;
②请直接写出∠A与的数量关系:___________________________;
(2)如图2,在△ABC中,若∠BAC,用三角板作出点P关于AB、AC的对称点、,(不写作法,保留作图痕迹),试判断点,与点A是否在同一直线上,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一位农民带上若干千克自产的土豆进城出售.为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系,如图,结合图象回答下列问题:
(1)农民自带的零钱是多少?
(2)求出降价前每千克的土豆价格是多少?
(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)求一次函数y=2x-2的图象l1与y=x-1的图象l2的交点P的坐标.
(2)求直线与轴交点A的坐标; 求直线与x轴的交点B的坐标;
(3)求由三点P、A、B围成的三角形的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,E是AB边上一点,且∠A=∠EDF=60°,有下列结论:①AE=BF;②△DEF是等边三角形;③△BEF是等腰三角形;④∠ADE=∠BEF,其中结论正确的个数是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校环保志愿者协会对该市城区的空气质量进行调查,从全年365天中随机抽取了80天的空气质量指数(AQI)数据,绘制出三幅不完整的统计图表.请根据图表中提供的信息解答下列问题:
AQI指数 | 质量等级 | 天数(天) |
0﹣50 | 优 | m |
51﹣100 | 良 | 44 |
101﹣150 | 轻度污染 | n |
151﹣200 | 中度污染 | 4 |
201﹣300 | 重度污染 | 2 |
300以上 | 严重污染 | 2 |
(1 )统计表中m= ,n= .扇形统计图中,空气质量等级为“良”的天数占 %;
(2)补全条形统计图,并通过计算估计该市城区全年空气质量等级为“优”和“良”的天数共多少天?
(3)据调查,严重污染的2天发生在春节期间,燃放烟花爆竹成为空气污染的一个重要原因,据此,请你提出一条合理化建议.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直角梯形ABCD中,AB∥DC,∠DAB=90°,AD=2DC=4,AB=6.动点M以每秒1个单位长的速度,从点A沿线段AB向点B运动;同时点P以相同的速度,从点C沿折线C-D-A向点A运动.当点M到达点B时,两点同时停止运动.过点M作直线l∥AD,与线段CD的交点为E,与折线A-C-B的交点为Q.点M运动的时间为t(秒).
(1)当t=0.5时,求线段QM的长;
(2)当M在AB上运动时,是否可以使得以C、P、Q为顶点的三角形为直角三角形?若可以,请求t的值;若不可以,请说明理由.
(3)当t>2时,连接PQ交线段AC于点R.请探究是否为定值,若是,试求这个定值;若不是,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com