精英家教网 > 初中数学 > 题目详情

【题目】我们把三边长的比为3:4:5的三角形称为完全三角形,记命题A:“完全三角形是直角三角形”.若命题B是命题A的逆命题,请写出命题B:______________________并写出一个例子(该例子能判断命题B是错误的)

【答案】直角三角形是完全三角形;如:等腰直角三角形,或三边分别为5,12,13的三角形,或三边比为的三角形等.

【解析】

根据完全三角形的定义和互逆命题的知识进行解答即可.

解:命题B:直角三角形是完全三角形::如:等腰直角三角形是直角三角形,但三边比是:1:1:,不是完全三角形;

三边分别为5,12,13的三角形是直角三角形,但三边比是:, 不是完全三角形;

故答案为:直角三角形是完全三角形,如:等腰直角三角形,

或三边分别为5,12,13的三角形,或三边比为的三角形等.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】5张正面分别标有数字﹣2,﹣1,0,1,2的不透明卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a.

(1)a=0的概率;

(2)求既使关于x的一次函数y=(a+1)x+a﹣4的图象不经过第二象限,又使关于x的方程+3=有整数解的概率;

(3)若再从剩下的四张中任取一张,将卡片上的数字记为b,求使一元二次方程x2+2ax+b2=0的两根均为正数的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2018年10月23日,港珠澳大桥正式开通,成为横亘在伶仃洋上的一道靓丽的风景.大桥主体工程隧道的东、西两端各设置了一个海中人工岛,来衔接桥梁和海底隧道西人工岛上的A点和东人工岛上的B点间的距离约为5.6千米,点C是与西人工岛相连的大桥上的一点,ABC在一条直线上.如图一艘观光船沿与大桥段垂直的方向航行,到达P点时观测两个人工岛,分别测得与观光船航向的夹角∠DPA=18°,∠DPB=53°,求此时观光船到大桥AC段的距离的长

参考数据:°°°°°°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为1个单位长度的小正方形组成的12×12网格中建立平面直角坐标系,格点△ABC(顶点是网格线的交点)的坐标分别是A(﹣2,2),B(﹣3,1),C(﹣1,0).

(1)将△ABC绕点O逆时针旋转90°得到△DEF,画出△DEF

(2)以O为位似中心,将△ABC放大为原来的2倍,在网格内画出放大后的△A1B1C1,若P(xy)为△ABC中的任意一点,这次变换后的对应点P1的坐标为 .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,∠ACB=90°,AB=25,BC=15.

(1)如图1,折叠△ABC使点A落在AC边上的点D处,折痕交ACAB分别于QH,若SABC=9SDHQ,则HQ   

(2)如图2,折叠△ABC使点A落在BC边上的点M处,折痕交ACAB分别于EF.若FMAC,求证:四边形AEMF是菱形;

(3)在(1)(2)的条件下,线段CQ上是否存在点P,使得△CMP和△HQP相似?若存在,求出PQ的长;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小李的活鱼批发店以44/公斤的价格从港口买进一批2000公斤的某品种活鱼,在运输过程中,有部分鱼未能存活,小李对运到的鱼进行随机抽查,结果如表一.由于市场调节,该品种活鱼的售价与日销售量之间有一定的变化规律,表二是近一段时间该批发店的销售记录.

(1)请估计运到的2000公斤鱼中活鱼的总重量;(直接写出答案)

(2)按此市场调节的观律,

①若该品种活鱼的售价定为52.5/公斤,请估计日销售量,并说明理由;

②考虑到该批发店的储存条件,小李打算8天内卖完这批鱼(只卖活鱼),且售价保持不变,求该批发店每日卖鱼可能达到的最大利润,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】咸宁市某中学为了解本校学生对新闻、体育、动画、娱乐四类电视节目的喜爱情况,随机抽取了部分学生进行问卷调查,根据调查结果绘制了如下图所示的两幅不完整统计图,请你根据图中信息解答下列问题:

补全条形统计图,体育对应扇形的圆心角是 度;

根据以上统计分析,估计该校名学生中喜爱娱乐的有 人;

在此次问卷调查中,甲、乙两班分别有人喜爱新闻节目,若从这人中随机抽取人去参加新闻小记者培训,请用列表法或者画树状图的方法求所抽取的人来自不同班级的概率

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCACD中,∠B=D,tanB=,BC=5,CD=3,BCA=90°﹣BCD,则AD=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线yax2+bx+cx轴交于点A(﹣1,0),顶点坐标(1,n),y轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:①3a+b<0;②﹣1≤a≤﹣;③对于任意实数ma+bam2+bm总成立;关于x的方程ax2+bx+cn﹣1有两个不相等的实数根.其中结论正确的个数为(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步练习册答案