【题目】如图,四边形 ABCD 中,AE,DF 分别是∠BAD,∠ADC 的平分线,且 AE⊥DF 于点 O . 延长 DF 交 AB 的延长线于点 M .
(1)求证:AB∥DC ;
(2)若∠MBC=120°,∠BAD=108°,求∠C,∠DFE 的度数.
【答案】(1)见详解;(2)∠C=120°,∠DFE=24°
【解析】
(1)根据角平分线的定义可得∠DAB=2∠EAB,∠ADC=2∠ADF,根据垂直的定义可得∠AOD=90°,即∠DAE+∠ADF=90°,从而可得∠BAD+∠ADC=2(∠DAE+∠ADF)=180°,即可得证;
(2)由AB∥DC可得∠C=∠MBC,从而得出∠ADC=72°,再根据角平分线的定义以及三角形内角和公式解答即可.
解:(1)证明:∵AE,DF分别是∠BAD,∠ADC的平分线,
∴∠DAB=2∠EAB,∠ADC=2∠ADF,
∵AE⊥DF,
∴∠AOD=90°.
∴∠DAE+∠ADF=90°,
∴∠BAD+∠ADC=2(∠DAE+∠ADF)=180°,
∴AB∥DC;
(2)∵AB∥DC,
∴∠C=∠MBC.
∵∠MBC=120°,
∴∠C=120°,
∵∠BAD=108°,
∴∠ADC=72°,
∴,
∴∠DFE=180°﹣(∠C+∠CDF)=24°.
科目:初中数学 来源: 题型:
【题目】某游泳馆普通票价为20元/张,暑假为了促销,新推出两种优惠卡:①金卡售价600元/张,每次凭卡不再收费;②银卡售价150元/张,每次凭卡另收10元.暑假普通票正常出售,两种优惠卡仅限暑假使用,不计次数。设游泳x次时,所需总费用为y元。
(1)分别写出选择银卡,普通票消费时,y与x之间的函数关系式;
(2)在同一坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A、B、C的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校购买一批办公用品,有甲、乙两家超市可供选择:甲超市给予每件0.8元的优惠价格,乙商超市的优惠条件如图象所示.
(1)分别求出在两家超市购买费用 y(元)与购买数量x(件)的函数关系式;
(2)若你是学校采购员,应如何选择才能更省钱?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】菱形的周长为32cm,一个内角的度数是60°,则两条对角线的长分别是( )
A. 8cm和4cm B. 4cm和8cm C. 8cm和8cm D. 4cm和4cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为2的菱形ABCD中,∠A=60°,点M是AD边的中点,点N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A’MN,连结A’C,则A’C长度的最小值是( ).
A.B.C.D.2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是一个按某种规律排列的数阵:
第一行
第二行
第三行
第四行
根据数阵排列的规律,第n(n是整数,且n≥3)行从左向右数第(n﹣2)个数是(用含n的代数式表示)( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1)所示,A,E,F,C在一条直线上,AE=CF,过E,F分别作DE⊥AC,BF⊥AC,若AB=CD.
(1)求证:EG=FG.
(2)若将△DEC的边EC沿AC方向移动,变为图(2)时,其余条件不变,上述结论是否成立?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com