【题目】一个不透明的袋子中装有3个红球和1个白球,这些球除颜色外都相同.
(1)从中随机摸出1个球,记录颜色后放回,搅匀,再摸出1个球.摸出的两个球中,1个为红球,1个为白球的概率为;
(2)从中随机摸出1个球,记录颜色后不放回,再摸出1个球.求摸出的两个球中,1个为红球,1个为白球的概率.
【答案】
(1)
(2)解:编画树状图得:
∵共有12种可能出现的结果,它们出现的可能性相同,摸出“1个是红球,1个白球”(记为事件B)的结果有6种,
∴摸出的两个球中,1个为红球,1个为白球的概率为: = .
【解析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与摸出的两个球中,1个为红球,1个为白球的情况,再利用概率公式即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与摸出的两个球中,1个为红球,1个为白球的情况,再利用概率公式即可求得答案.
解:(1)画树状图得:
∵共有16种等可能的结果,摸出的两个球中,1个为红球,1个为白球的有6种情况,
∴摸出的两个球中,1个为红球,1个为白球的概率为: = ;
所以答案是: ;
【考点精析】本题主要考查了随机事件的相关知识点,需要掌握在条件S下,一定会发生的事件,叫相对于条件S的必然事件;在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件;在条件S下可能发生也可能不发生的事件,叫相对于S的随机事件才能正确解答此题.
科目:初中数学 来源: 题型:
【题目】下列说法①△ABC中,若∠A+∠B=90°,则△ABC是直角三角形;②已知正n边形的一个内角为140,则这个正多边形的边数是9;③一个多边形的内角中最多有3个锐角;④三角形的外角一定大于内角;⑤若不等式组的整数解恰好有2个,则m的取值范围是,其中说法正确的是_____________________(填写说法正确的序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我市某中学举行“中国梦校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.
(1)根据图示填写下表;
平均数(分) | 中位数(分) | 众数(分) | |
初中部 | 85 | ||
高中部 | 85 | 100 |
(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;
(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.
【答案】(1)
平均数(分) | 中位数(分) | 众数(分) | |
初中部 | 85 | 85 | 85 |
高中部 | 85 | 80 | 100 |
(2)初中部成绩好些(3)初中代表队选手成绩较为稳定
【解析】解:(1)填表如下:
平均数(分) | 中位数(分) | 众数(分) | |
初中部 | 85 | 85 | 85 |
高中部 | 85 | 80 | 100 |
(2)初中部成绩好些。
∵两个队的平均数都相同,初中部的中位数高,
∴在平均数相同的情况下中位数高的初中部成绩好些。
(3)∵,
,
∴<,因此,初中代表队选手成绩较为稳定。
(1)根据成绩表加以计算可补全统计表.根据平均数、众数、中位数的统计意义回答。
(2)根据平均数和中位数的统计意义分析得出即可。
(3)分别求出初中、高中部的方差比较即可。
【题型】解答题
【结束】
21
【题目】受天气的影响,某超市鸡蛋供应紧张,需每天从外地调运鸡蛋1200斤,超市决定从甲、乙两个大型养殖场调运鸡蛋,已知从甲养殖场每天至少要调出300斤,从两养殖场调运鸡蛋到超市的路程和运费如下表:
到超市的路程千米 | 运费元斤千米 | |
甲养殖场 | 200 |
|
乙养殖场 |
|
设从甲养殖场调运鸡蛋x斤,总运费为W元,试写出W与x的函数关系式;
若某天计划从乙养殖场调运700斤鸡蛋,则总运费为多少元?
请你帮助超市设计一个调运方案,使得每天调运鸡蛋的总运费最低?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如果关于x的一次函数y=(a+1)x+(a﹣4)的图象不经过第二象限,且关于x的分式方程有整数解,那么整数a值不可能是( )
A. 0B. 1C. 3D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一条东西走向河的一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于某种原因,由C到A的路现在已经不通,某村为方便村民取水决定在河边新建一个取水点H(A、H、B在一条直线上),并新修一条路CH,测得CB=3千米,CH=2.4千米,HB=1.8千米.
(1)问CH是否为从村庄C到河边的最近路?(即问:CH与AB是否垂直?)请通过计算加以说明;
(2)求原来的路线AC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2018年5月,某城遭遇暴雨水灾,武警战士乘一冲锋舟从A地逆流而上,前往C地营救受困群众,途经B地时,由所携带的救生艇将B地受困群众运回A地,冲锋舟继续前进,到C地接到群众后立刻返回A地,途中曾与救生艇相遇,冲锋舟和救生艇距A地的距离y(千米)和冲锋舟出发后所用时间x(分)之间的函数图象如图所示,假设群众上下冲锋舟和救生艇的时间忽略不计,水流速度和冲锋舟在静水中的速度不变.
(1)冲锋舟从A地到C地的时间为 分钟,冲锋舟在静水中的速度为 千米/分,水流的速度为 千米/分.
(2)冲锋舟将C地群众安全送到A地后,又立即去接应救生艇,已知救生艇与A地的距离y(千米)和冲锋舟出发后所用时间x(分钟)之间的函数关系式为y=kx+b,若冲锋舟在距离A地 千米处与救生艇第二次相遇,求k、b的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1),在矩形ABCD中,AB=3,BC=4,连接BD.现将一个足够大的直角三角板的直角顶点P放在BD所在的直线上,一条直角边过点C,另一条直角边与AB所在的直线交于点G.
(1)是否存在这样的点P,使点P、C、G为顶点的三角形与△GCB全等?若存在,画出图形,并直接在图形下方写出BG的长.(如果你有多种情况,请用①、②、③、…表示,每种情况用一个图形单独表示,如果图形不够用,请自己画图)
(2)如图(2),当点P在BD的延长线上时,以P为圆心、PB为半径作圆分别交BA、BC延长线于点E、F,连EF,分别过点G、C作GM⊥EF,CN⊥EF,M、N为垂足.试探究PM与FN的关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平行四边形ABCD中,AC与BD相交于0,AE⊥BD于E,CF⊥BD于F,则图中的全等三角形共( )
A. 5对B. 6对C. 7对D. 8对
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】九年级某班同学在庆祝2015年元旦晚会上进行抽奖活动.在一个不透明的口袋中有三个完全相同的小球,把它们分别标号1、2、3.随机摸出一个小球记下标号后放回摇匀,再从中随机摸出一个小球记下标号.
(1)请用列表或画树形图的方法(只选其中一种),表示两次摸出小球上的标号的所有结果;
(2)规定当两次摸出的小球标号相同时中奖,求中奖的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com