【题目】甲组的4名工人3月份完成的总工作量比此月人均定额的4倍多20件,乙组的5名工人3月份完成的总工作量比此月人均定额的6倍少20件.
(1)如果两组工人实际完成的此月人均工作量相等,那么此月人均定额是多少件?
(2)如果甲组工人实际完成的此月人均工作量比乙组的多2件,则此月人均定额是多少件?
(3)如果甲组工人实际完成的此月人均工作量比乙组的少2件,则此月人均定额是多少件?
【答案】(1)45件;(2)35件;(3)55件.
【解析】试题分析:设此月人均定额为x件.由题意知:甲组的4名工人3月份完成的总工作量比此月人均定额的4倍多20件,则甲组的总工作量为(4x+20)件,人均为件;乙组的5名工人3月份完成的总工作量比此月人均定额的6倍少20件,乙组的总工作量为(6x﹣20)件,乙组人均为件.
(1)可根据甲组人均工作量=乙组人均工作量为等量关系列出方程求解;
(2)可根据甲组人均工作量﹣2=乙组人均工作量为等量关系列出方程求解;
(3)可根据甲组人均工作量=乙组人均工作量﹣2列出方程求解.
试题解析:解:设此月人均定额为x件,则甲组的总工作量为(4x+20)件,人均为件;乙组的5名工人3月份完成的总工作量比此月人均定额的6倍少20件,乙组的总工作量为(6x﹣20)件,乙组人均为件.
(1)∵两组人均工作量相等,∴=,解得:x=45.
所以,此月人均定额是45件;
(2)∵甲组的人均工作量比乙组多2件,∴,解得:x=35,所以,此月人均定额是35件;
(3)∵甲组的人均工作量比乙组少2件,∴=﹣2,解得:x=55,所以,此月人均定额是55件.
科目:初中数学 来源: 题型:
【题目】为了更好地保护美丽如画的邛海湿地,西昌市污水处理厂决定先购买A,B两种型号的污水处理设备共20台,对邛海湿地周边污水进行处理.每台A型污水处理设备12万元,每台B型污水处理设备10万元.已知1台A型污水处理设备和2台B型污水处理设备每周可以处理污水640 t,2台A型污水处理设备和3台B型污水处理设备每周可以处理污水1 080 t.
(1)求A,B两种型号的污水处理设备每周每台分别可以处理污水多少吨.
(2)经预算,市污水处理厂购买设备的资金不超过230万元,每周处理污水的量不低于4 500 t,请你列举出所有购买方案,并指出哪种方案所需资金最少,最少是多少.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,给出下列四个条件,AB=DE,BC=EF,∠B=∠E,∠C=∠F,从中任选三个条件能使△ABC≌△DEF的共有( )
A. 1组 B. 2组 C. 3组 D. 4组
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在△ABC中,AB=AC,点D为BC中点,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E.求证:四边形ADCE为矩形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是( )
A. △AFD≌△DCE B. AF=AD C. AB=AF D. BE=AD﹣DF
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)n边形(n>3)其中一个顶点的对角线有_____条;
(2)一个凸多边形共有14条对角线,它是几边形?
(3)是否存在有21条对角线的凸多边形?如果存在,它是几边形?如果不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB为⊙O的直径,AD、BD是⊙O的弦,BC是⊙O的切线,切点为B,OC∥AD,BA、CD的延长线相交于点E.
(1)求证:DC是⊙O的切线;
(2)若AE=1,ED=3,求⊙O的半径.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com