【题目】(1)n边形(n>3)其中一个顶点的对角线有_____条;
(2)一个凸多边形共有14条对角线,它是几边形?
(3)是否存在有21条对角线的凸多边形?如果存在,它是几边形?如果不存在,说明理由.
【答案】(1)(n-3);(2) 七边形.(3) 不存在.
【解析】试题分析:(1)根据n边形从一个顶点出发可引出(n-3)条对角线即可求解;
(2)根据任意凸n边形的对角线有条,即可解答;
(3)不存在,根据=18,解得:n=,n不为正整数所以不存在.
试题解析:(1) n边形过每一个顶点的对角线有(n3)条,
故答案为:(n3);
(2)设这个凸多边形是n边形,由题意,得=14.
解得n1=7,n2=-4(不合题意,舍去).
答:这个凸多边形是七边形.
(3)不存在.
理由:假设存在n边形有21条对角线.由题意,得=21.解得n=.
因为多边形的边数为正整数,但不是正整数,故不合题意.
所以不存在有21条对角线的凸多边形.
科目:初中数学 来源: 题型:
【题目】某校举办“书香校园”读书活动,经过对八年级(1)班的42个学生的每人读书数量进行统计分析,得到条形统计图如图所示:
(1)填空:该班每个学生读书数量的众数是 本,中位数是 本;
(2)若把条形统计图转换为扇形统计图,求该班学生“读书数量为4本的人数”所对应扇形的圆心角的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲组的4名工人3月份完成的总工作量比此月人均定额的4倍多20件,乙组的5名工人3月份完成的总工作量比此月人均定额的6倍少20件.
(1)如果两组工人实际完成的此月人均工作量相等,那么此月人均定额是多少件?
(2)如果甲组工人实际完成的此月人均工作量比乙组的多2件,则此月人均定额是多少件?
(3)如果甲组工人实际完成的此月人均工作量比乙组的少2件,则此月人均定额是多少件?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某文具店在一周的销售中,盈亏情况如下表(盈余为正,单位:元):
星期一 | 星期二 | 星期三 | 星期四 | 星期五 | 星期六 | 星期日 | 合计 |
-27.8 | -70.3 | 200 | 138.1 | -8 | 188 | 458 |
表中星期六的盈亏数被墨水涂污了,请你通过计算说明星期六的盈亏情况.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB =AC,AD⊥BC于点D,AM是△ABC的外角∠CAE的平分线.
(1)求证:AM∥BC;
(2)若DN平分∠ADC交AM于点N,判断△ADN的形状并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数的图象如图所示,有下列结论:①abc<0;②a+c>b;③3a+c<0;④a+b>m(am+b)(其中m≠1),其中正确的结论有______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线过点A(﹣3,0),B(﹣2,3),C(0,3),其顶点为D.
(1)求抛物线的解析式;
(2)设点M(1,m),当MB+MD的值最小时,求m的值;
(3)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值;
(4)若抛物线的对称轴与直线AC相交于点N,E为直线AC上任意一点,过点E作EF∥ND交抛物线于点F,以N,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线(a≠0)与x轴交于A、B两点,与y轴交于点C,且OA=2,OB=8,OC=6.
(1)求抛物线的解析式;
(2)点M从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时,点N从B出发,在线段BC上以每秒1个单位长度的速度向C点运动,当其中一个点到达终点时,另一个点也停止运动,当△MBN存在时,求运动多少秒使△MBN的面积最大,最大面积是多少?
(3)在(2)的条件下,△MBN面积最大时,在BC上方的抛物线上是否存在点P,使△BPC的面积是△MBN面积的9倍?若存在,求点P的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com