精英家教网 > 初中数学 > 题目详情
20.计算:(-$\frac{1}{3}$)-1-|-4|+$\sqrt{{3}^{2}+{4}^{2}}$+(sin30°)0

分析 本题涉及负整数指数幂、零指数幂、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.

解答 解:(-$\frac{1}{3}$)-1-|-4|+$\sqrt{{3}^{2}+{4}^{2}}$+(sin30°)0
=-3-4+5+1
=-1.

点评 本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

10.如图所示,在平面直角坐标系xOy中,B1(1,0),B2(3,0),B3(6,0),B4(10,0),…,以B1B2为对角线作第一个正方形A1B1C1B2,以B2B3为对角线作第二个正方形A2B2C2B3,以B3B4为对角线作第三个正方形A3B3C3B4,…,如果所作正方形的对角线BnBn+1的长度依次增加1个单位长度,顶点An都在第一象限内(n≥1,且n为整数),用n的代数式表示An的横坐标为$\frac{(π+1)^{2}}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.2015年某省为加快建设综合交通体系,对铁路、公路、机场三个重大项目加大了建设资金的投入.

(1)机场建设项目中所有6个机场投入的建设资金金额统计如图1,已知机场E投入的建设资金金额是机场C,D所投入建设资金金额之和的三分之二,求机场E投入的建设资金金额是多少亿元?并补全条形统计图;
(2)将铁路、公路机场三项建设所投入的资金金额绘制成了如图2扇形统计图以及统计表,根据扇形统计图及统计表中信息,求得a=170,b=30,c60%,d122.4°,m=500.(请直接填写计算结果)
铁路公路机场铁路、公路、机场三项投入建设资金总金额(亿元)
投入资金(亿元)300abm
所占百分比c34%6%
所占圆心角216°d21.6°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.解不等式组$\left\{\begin{array}{l}{2x+5≥3}\\{3(x-2)<2x-4}\end{array}\right.$,并把解集在数轴上表示出来.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.为了帮扶本市一名特困儿童,某班有20名同学积极捐款,他们捐款的数额如下表:
捐款的数额(单位:元)205080100
人数(单位:名)6743
对于这20名同学的捐款,众数是(  )
A.20元B.50元C.80元D.100元

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,一条输电线路从A地到B地需要经过C地,图中AC=20千米,∠CAB=30°,∠CBA=45°,因线路整改需要,将从A地到B地之间铺设一条笔直的输电线路.
(1)求新铺设的输电线路AB的长度;(结果保留根号)
(2)问整改后从A地到B地的输电线路比原来缩短了多少千米?(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.若关于x的分式方程$\frac{2}{x-3}$+$\frac{x+m}{3-x}$=2有增根,则m的值是(  )
A.m=-1B.m=0C.m=3D.m=0或m=3

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.如图,在矩形纸片ABCD中,AB=4cm,AD=8cm,按如图方式折叠,使点D与点B重合,折痕为EF,则tan∠BEF=(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.设ω是一个平面图形,如果用直尺和圆规经过有限步作图(简称尺规作图),画出一个正方形与ω的面积相等(简称等积),那么这样的等积转化称为ω的“化方”.
(1)阅读填空
如图①,已知矩形ABCD,延长AD到E,使DE=DC,以AE为直径作半圆.延长CD交半圆于点H,以DH为边作正方形DFGH,则正方形DFGH与矩形ABCD等积.
理由:连接AH,EH.
∵AE为直径,∴∠AHE=90°,∴∠HAE+∠HEA=90°.
∵DH⊥AE,∴∠ADH=∠EDH=90°
∴∠HAD+∠AHD=90°
∴∠AHD=∠HED,∴△ADH∽△HDE.
∴$\frac{AD}{DH}=\frac{DH}{DE}$,即DH2=AD×DE.
又∵DE=DC
∴DH2=AD×DC,即正方形DFGH与矩形ABCD等积.
(2)操作实践
平行四边形的“化方”思路是,先把平行四边形转化为等积的矩形,再把矩形转化为等积的正方形.
如图②,请用尺规作图作出与?ABCD等积的矩形(不要求写具体作法,保留作图痕迹).
(3)解决问题
三角形的“化方”思路是:先把三角形转化为等积的矩形(填写图形名称),再转化为等积的正方形.
如图③,△ABC的顶点在正方形网格的格点上,请作出与△ABC等积的正方形的一条边(不要求写具体作法,保留作图痕迹,不通过计算△ABC面积作图).
(4)拓展探究
n边形(n>3)的“化方”思路之一是:把n边形转化为等积的n-1边形,…,直至转化为等积的三角形,从而可以化方.
如图④,四边形ABCD的顶点在正方形网格的格点上,请作出与四边形ABCD等积的三角形(不要求写具体作法,保留作图痕迹,不通过计算四边形ABCD面积作图).

查看答案和解析>>

同步练习册答案