精英家教网 > 初中数学 > 题目详情

【题目】已知°,点的内部,点与点关于对称,点与点关于对称,若,则______

【答案】5

【解析】

连接OP,根据轴对称的性质可得OP1=OP=OP2,∠BOP=BOP1,∠AOP=AOP2,然后求出∠P1OP2=2AOB=60°,再根据有一个角是60°的等腰三角形是等边三角形判定.

解:如图,连接OP

P1P关于OB对称,P2P关于OA对称,
OP1=OP=OP2,∠BOP=BOP1,∠AOP=AOP2
OP1=OP2
P1OP2=BOP+BOP1+AOP+AOP2=2BOP+2AOP=2AOB
∵∠AOB=30°,
∴∠P1OP2=60°,
∴△P1OP2是等边三角形.
P1P2 =OP2=OP=5

故答案为:5

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,ACBD相交于OAE平分∠BAD,交BCE,若∠CAE=15°,求∠BOE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC=5,BC=8,将△ABC绕着点B旋转的△A′BC′,点A的对应点A′,点C的对应点C′.如果点A′在BC边上,那么点C和点C′之间的距离等于多少

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,点分别在边上,相交于点,如果已知,那么还不能判定,补充下列一个条件后,仍无法判定的是(

A.B.

C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在2016年龙岩市初中体育中考中,随意抽取某校5位同学一分钟跳绳的次数分别为:158,160,154,158,170,则由这组数据得到的结论错误的是( )
A.平均数为160
B.中位数为158
C.众数为158
D.方差为20.3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】根据要求回答问题:
(1)【提出问题】
已知:菱形ABCD的变长为4,∠ADC=60°,△PEF为等边三角形,当点P与点D重合,点E在对角线AC上时(如图1所示),求AE+AF的值;

(2)【类比探究】
在上面的问题中,如果把点P沿DA方向移动,使PD=1,其余条件不变(如图2),你能发现AE+AF的值是多少?请直接写出你的结论;

(3)【拓展迁移】
在原问题中,当点P在线段DA的延长线上,点E在CA的延长线上时(如图3),设AP=m,则线段AE、AF的长与m有怎样的数量关系?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)如图1所示,是由几个小立方块所搭几何体的俯视图,小立方块中的数字表示在该位置小立方块的个数.请画出从正面和从左面看到的这个几何体的形状图.(注意:画得不规范不给分)

从正面看:

从左面看:

2)如图2,一次数学活动课上,小明用7个棱长为1cm的小立方块积木搭成的几何体,然后他请小亮用尽可能少的同样大小的立方块在旁边再搭一个几何体,使小亮所搭的几何体恰好可以和小明所搭的几何体拼成一个大长方体(即拼大长方体时将其中一个几何体翻转,且假定组成每个几何体的立方块粘合在一起),则:

①小亮至少还需要   个小正方体;

②请画出小明所搭几何体的三视图,并计算①中小亮所搭几何体的表面积.

主视图:

俯视图:

左视图:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.

(1)求证:△ABC≌△ADE;

(2)求∠FAE的度数;

(3)求证:CD=2BF+DE.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,直线l1:y=﹣x+n过点A(﹣1,3),双曲线C:y= (x>0),过点B(1,2),动直线l2:y=kx﹣2k+2(常数k<0)恒过定点F.

(1)求直线l1 , 双曲线C的解析式,定点F的坐标;
(2)在双曲线C上取一点P(x,y),过P作x轴的平行线交直线l1于M,连接PF.求证:PF=PM.
(3)若动直线l2与双曲线C交于P1 , P2两点,连接OF交直线l1于点E,连接P1E,P2E,求证:EF平分∠P1EP2

查看答案和解析>>

同步练习册答案