精英家教网 > 初中数学 > 题目详情
16.如图,在△ABC中,AC=BC=5cm,AB=6cm,CD⊥AB于点D.动点P、Q同时从点C出发,点P沿线CD做依次匀速往返运动,回到点C停止;点Q沿折线CA-AD向终点D做匀速运动;点P、Q运动的速度都是5cm/s.过点P作PE∥BC,交AB于点E,连结PQ.当点P、E不重合点P、Q不重合时,以线段PE∥BC,交AB于点E,连结PQ.当点P、E不重合且点P、Q不重合时,以线段PE、PQ为一组邻边作?PEFQ.设点P运动的时间为t(s),?PEFQ与△ABC重叠部分的面积为S(cm2).
(1)用含t的代数式表示线段PE的长.
(2)当点F在线段AB上时,求t的值.
(3)当点Q在线段AB上运动时,求S与t之间的函数关系式.
(4)在整个运动过程中,当?PEFQ为矩形时,直接写出t的值.

分析 (1)根据题意,分两种情况:①当0<t<$\frac{4}{5}$时;②当$\frac{4}{5}$<t≤$\frac{8}{5}$时;然后根据PE∥BC,可得$\frac{PE}{BC}=\frac{PD}{CD}$,据此用含t的代数式表示线段PE的长即可.
(2)首先用含t的代数式表示出QF、QA,然后根据QA=QF,求出t的值是多少即可.
(3)首先作PM⊥BC于点M,作QN⊥BC于点N,设?PEFQ的高为h,分别用含t的代数式表示出PM、QN,进而用含t的代数式表示出h;然后根据三角形的面积的求法,求出S与t之间的函数关系式即可.
(4)当?PEFQ为矩形时,推得∠DQP=∠BCD,然后根据tan∠DQP=tan∠BCD=$\frac{BD}{CD}$=$\frac{3}{4}$,可得$\frac{PD}{QD}=\frac{5t-4}{8-5t}=\frac{3}{4}$,据此求出t的值是多少即可.

解答 解:(1)∵AC=BC=5cm,CD⊥AB于点D,
∴点D是AB的中点,AD=6÷2=3(cm),
∵AC=5cm,
∴CD=$\sqrt{{AC}^{2}{-AD}^{2}}$=$\sqrt{{5}^{2}{-3}^{2}}=4$(cm).
①当0<t<$\frac{4}{5}$时,如图1,

∵PC=5t,
∴PD=CD-PC=4-5t,
∵PE∥BC,
∴$\frac{PE}{BC}=\frac{PD}{CD}$,
∴PE=$\frac{BC•PD}{CD}=\frac{5}{4}PD$=$\frac{5}{4}$(4-5t)=5-$\frac{25}{4}$t.

②当$\frac{4}{5}$<t≤$\frac{8}{5}$时,如图2,

PD=5t-4,
∵PE∥BC,
∴$\frac{PE}{BC}=\frac{PD}{CD}$,
∴PE=$\frac{BC•PD}{CD}=\frac{5}{4}PD$=$\frac{5}{4}$(5t-4)=$\frac{25}{4}$t-5.
综上,可得
PE=$\left\{\begin{array}{l}{5-\frac{25}{4}t,0<t<\frac{4}{5}}\\{\frac{25}{4}t-5,\frac{4}{5}<t≤\frac{8}{5}}\end{array}\right.$.

(2)如图3,

QF=PE=$\frac{25}{4}$t-5
∵CQ=5t,
∴QA=AC-CQ=5-5t,
∵PE∥BC,PE∥QF,
∴QF∥BC,
∴$\frac{QA}{AC}=\frac{QF}{BC}$,
∵AC=BC,
∴QA=QF,
∴5-5t=$\frac{25}{4}$t-5,
解得t=$\frac{8}{9}$.

(3)如图4,作PM⊥BC于点M,作QN⊥BC于点N,

设?PEFQ的高为h,
∵sin∠PCM=$\frac{BD}{BC}=\frac{3}{5}$,
∴PM=PC•sin∠PCM=(8-5t)×$\frac{3}{5}$=$\frac{24}{5}$-3t,
∵sin∠QBN=$\frac{CD}{BC}$=$\frac{4}{5}$,
∴QN=BQ•sin∠QBN=[6-(5t-5)]×$\frac{4}{5}$=$\frac{44}{5}$-4t,
∴h=QN-PM=($\frac{44}{5}$-4t)-($\frac{24}{5}$-3t)=4-t,
∴S=$\frac{1}{2}PE•h$=$\frac{1}{2}×$($\frac{25}{4}$t-5)×(4-t)=-$\frac{25}{8}$t2+15t-10.

(4)如图5,当?PEFQ为矩形时,

PD=5t-4,QD=8-5t,
∵?PEFQ为矩形,
∴∠DQP+∠DEP=90°,
∵∠B+BCD=90°,∠DEP=∠B,
∴∠DQP=∠BCD,
∴tan∠DQP=tan∠BCD=$\frac{BD}{CD}$=$\frac{3}{4}$,
∴$\frac{PD}{QD}=\frac{5t-4}{8-5t}=\frac{3}{4}$,
解得t=$\frac{8}{7}$.

点评 (1)此题主要考查了相似形综合题,考查了分析推理能力,考查了分类讨论思想的应用,考查了数形结合思想的应用,要熟练掌握.
(2)此题还考查了函数关系式的求法、矩形的性质和应用、三角函数的应用、三角形的面积的求法,要熟练掌握.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

13.已知二次函数y=-x2-mx-m+1(x为自变量)
(1)若该函数的图象与x轴有两个交点,求m的取值范围;
(2)在(1)的情况下,设函数图象与x轴的两个交点分别为AB,且A点在B点的左边,两点中至少有一点在原点的右边,又设函数图象与y轴交于点C,若以A.B.C三点为顶点的△ABC为等腰三角形,求m的值并写出相应的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.画图并计算:已知线段EF=30cm,延长EF到B,使FB=EF,延长FE到A,使AE=EB,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于C(0,3),且抛物线的顶点D(-1,4).
(1)求抛物线的解析式和直线AC的解析式;
(2)P是直线AC上方的抛物线上的任意一点,求四边形PAOC的面积S的最大值和此时点P的坐标;
(3)F是抛物线的对称轴上一点,当F到直线AC的距离等于线段FB长度的一半时,求点F的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.已知抛物线y=-x2-2mx+4m+5,当实数m的值为-1时,抛物线与x轴的两个交点和它的顶点所组成的三角形面积最小,其最小值是1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函数y=$\frac{1}{x}$的图象上.若点B在反比例函数y=$\frac{k}{x}$的图象上,则k的值为-4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,在ABCD中⊙O截△ABC三边所得的弦长相等,求证:O是△ABC的内心.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.当a=-1时,代数式(a+1)2+a(a+3)的值等于(  )
A.-4B.4C.-2D.2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.下列说法正确的是(  )
A.倒数等于它本身的数只有1B.负数没有绝对值
C.-a一定是负数D.正数的绝对值是它本身

查看答案和解析>>

同步练习册答案