精英家教网 > 初中数学 > 题目详情
7.画图并计算:已知线段EF=30cm,延长EF到B,使FB=EF,延长FE到A,使AE=EB,求AB的长.

分析 根据线段中点的性质,可得EB的长,再根据线段中点的性质,可得答案.

解答 解:如图:

由FB=FE=30cm,得
EB=2EF=60cm.
由AE=EB=60cm.得
AB=2EB=2×60=120cm,
AB的长120cm.

点评 本题考查了两点间的距离,两次利用中点的性质是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

4.若关于x的方程(x+1)2=k-1没有实数根,则k的取值范围是k<1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.把一块直角三角板DEM的直角顶点M放在等腰的直角三角板ABC的斜边AB的中点M上,ME和MD分别交边AC、BC于点P、Q,求证:MP=MQ.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.等腰Rt△ABC中,∠BCA=90°,BC=AC,点A,C分别在x轴,y轴上.
(1)点E在x轴上,且∠CEA=45°,连BE,求证:AE⊥BE;
(2)在(1)的条件下,判断线段BE、AE、CO之间的数量关系,写出你的结论并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.已知如图,∠C=90°,AE平分∠BAC交BC于E,EF⊥AB于F.
(1)求证:△ACE≌△AFE;
(2)若BF=$\frac{1}{2}$AB,求∠B的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.已知,图(1)是一张三角形纸片ABC,如图(2)所示将BC对折使C点与B点重合,折痕与BC的交点记为D.
(1)请在图(2)画出BC边上的中线.
(2)在△ABC中,已知AB=5cm,AC=7cm,求△ABD与△ACD的周长差.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,一次函数y=-$\frac{1}{2}x+2$分别交y轴、x 轴于A、B两点,抛物线y=-x2+bx+c过A、B两点.
(1)求这个抛物线的解析式;
(2)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t 取何值时,以A、O、M、N为顶点的四边形是平行四边形?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,在△ABC中,AC=BC=5cm,AB=6cm,CD⊥AB于点D.动点P、Q同时从点C出发,点P沿线CD做依次匀速往返运动,回到点C停止;点Q沿折线CA-AD向终点D做匀速运动;点P、Q运动的速度都是5cm/s.过点P作PE∥BC,交AB于点E,连结PQ.当点P、E不重合点P、Q不重合时,以线段PE∥BC,交AB于点E,连结PQ.当点P、E不重合且点P、Q不重合时,以线段PE、PQ为一组邻边作?PEFQ.设点P运动的时间为t(s),?PEFQ与△ABC重叠部分的面积为S(cm2).
(1)用含t的代数式表示线段PE的长.
(2)当点F在线段AB上时,求t的值.
(3)当点Q在线段AB上运动时,求S与t之间的函数关系式.
(4)在整个运动过程中,当?PEFQ为矩形时,直接写出t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,直线l1的函数关系式为$y=\frac{1}{2}x+1$,且l1与x轴交于点D,直线l2经过定点A(4,0),B(-1,5),直线l1与l2相交于点C,
(1)求直线l2的解析式;
(2)求△ADC的面积;
(3)在直线l2上存在一点F(不与C重合),使得△ADF和△ADC的面积相等,请求出F点的坐标;
(4)在x轴上是否存在一点E,使得△BCE的周长最短?若存在请求出E点的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案